
Lab 5: Robotic Pick and Place System
Michael Laks

mjlaks@wpi.edu
Teresa Saddler

tsaddler@wpi.edu
Marshall Trier
mtrier@wpi.edu

Benjamin Ward
blward@wpi.edu

Abstract—In this lab, the robotic arm was used to implement
a pick and place machine which uses the webcam to identify
object locations and then moves each object based on its color
and size. To accomplish this objective, object localization using
the webcam was implemented and trajectory generation was used
to control the arm’s location.

I. INTRODUCTION

Through the development of computer vision integration,
the RBE 3001 arm system can be applied as a robotic pick and
place system. Given localization and identification from vision
software, the arm end effector can be maneuvered in such a
way that it can be used to pick, grasp, and place. Extension
of this functionality includes sorting functionality - placing a
variety of different objects in appropriate locations.

II. METHODOLOGY

A. System Design

The RBE 3001 arm system is a 3 degree-of-freedom system
integrating three revolute joints powered by low-power servo
motors in order to control end effector position. Each joint
includes absolute encoders which can be used to determine
absolute rotation of each joint.

High-level control and visualization software, which oper-
ates on an x86-64 desktop computer (Ubuntu 16.04), is paired
with low-level STM32 (ARM) firmware which implements
fast interrupt-driven control loops. These systems communi-
cate using a custom 512-bit packet protocol over a standard
USB HID interface.

1) High-level Control Software: The high-level control
software, written in Matlab, performs the following general
functions: sending and receiving status and command packets,
forward, differential, and inverse kinematics, trajectory genera-
tion, manipulability analysis and singularity detection, logging,
and physical visualization.

One possible program structure is detailed in Figure 1.

Initialize
HID/camera

Load
stored data

Capture
workspace

image

Generate
trajectories

Run main
loop

Visualize
results

Fig. 1. One option for high-level program structure

The main loop of the high-level control and visualization
software, as per Figure 2, is straightforward. After receiving a
status packet, forward kinematics and differential kinematics
are applied to determine current position and velocity in task
space. The manipulability ellipsoid volume is calculated and
thresholded to determine whether the system is nearing a
singularity. A stick model of the arm system is displayed with
visualizations of position, joint axes, instantaneous velocity,
manipulability, etc. Finally, the setpoint is advanced if required
by the trajectory in order to send the next point in the path
being followed. Data is logged for later visualization and
analysis.

Receive
status packet

Forward
kinematics

Differential
kinematics

Check
manipulability

Display
visualization

Send setpoints

Toggle gripper
(if appropriate)

Fig. 2. Main loop event flow

A more sophisticated system, one which could respond
to changing object positions in real time, might capture
workspace images as part of the main program loop, and
recalculate trajectories as needed.

2) Low-level Real-time Software: Low-level STM32
firmware, written in C/C++, performs real-time tasks including
maintaining servo loops, reading positioning information from
encoders, and communication with high-level control and vi-
sualization code. Abstract program flow is detailed in Figure 3.

Initialize
peripherals

Initialize com-
munications

Run main
loop

Fig. 3. Main loop event flow

The real-time main loop performs only a few functions,
since most hardware communication is allocated to on-chip
peripherals. Through the communications interface, packets
are sent and recieved for: status, PID setpoints and coefficients,
system calibration actions, and end effector gripper servo state.



TODO: Large flowchart detailing all inter-system commu-
nications

B. Lab Procedure

In order to implement the object localization, we began by
setting up the webcam attached to the robotic arm. After in-
stalling Matlab’s package for USB webcams, we were able to
ensure that the webcam was available using the webcamlist
command. Once this was confirmed, we were able to create
a webcam variable using the webcam() command and view
the video feed using the preview() command.

We then calibrated the camera using the Matlab Camera
Calibrator app. In this app, we took a series of images of a 3D
printed object with a checkerboard containing 12mm x 12mm
black and white squares in different positions and orientations
throughout the workspace of the robot. The program then auto-
matically establishes a consistent reference frame convention
on the checkerboards, while discarding images it is unable
to process. We then ensured that the reference frames were
consistent between images, and discarded any in which they
weren’t, and then proceeded to allow the program to calibrate
the camera, setting a threshold of the reprojection error such
that we still had a sufficient amount of images but also a
very low error. Finally, using this calibration, we were able
to export the Camera Parameters and save the variable to be
loaded whenever the camera is used.

Next, we performed a camera-robot registration, in order to
enable objects within the view of the camera to be localized
in the reference frame of the robot. To do this, we placed
the checkerboard in the bottom-right of the robotic arm’s
workspace (positive x and positive y in the reference frame of
the robot), and ran the getCamToCheckerboard function
which returns the transformation matrix between the reference
frames of the camera and the checkerboard, T checkercam where
the reference frame of the checkerboard. We also calculated
the transformation matrix between the reference frames of the
base of the robot and the checkerboard, T checkerrobot manually
based on the linear and rotational change in the reference
frames. We were then able to multiply T checkcam by the inverse
of T checkerrobot in order to calculate the transformation matrix
between the camera and the base of the robot, T robotcam in
order to convert coordinates of objects in the camera view
from camera-space to task-space. We validated the calculated
transformation matrices by taking images using the webcam
and identifying points in the image with known task-space
coordinates and using the transformation matrices to convert
the camera-space coordinates to task-space coordinates and
checking for error between the known and calculated task-
space coordinates.

The next step was to enable identifying of actual objects in
the task space automatically and show visually on the image
the location of the object using colored circles corresponding
with the object’s color. To do this, we had to create masks
to find objects of different colors, specifically the blue, green
and yellow of the balls and the black of the bases. For the
blue, green and yellow of the balls, we created individual

masks using Matlab’s Color Thresholder app, which removed
everything from the image other than the ball of the correct
color. Each of these masks were then exported to a Matlab
function which when given an image, output a binary mask
of the image showing only the objects of the correct color.
For the black mask, we used Matlab’s Image Segmenter to
isolate the black bases of the balls, and then create another
function that when given an image, outputs a binary mask
of the image showing only the bases. Using these masks, we
then used the regionProps function to find the centroids
and radii of each of these objects in camera-space. Using the
centroids and radii, we were then able to plot circles on the
image showing the locations of the balls and the bases, using
the appropriate colors.

Once objects could be localized, we were then able to
implement actual retrieval of objects in the workspace. First,
the gripper needed to be made functional. Code was then
created to allow the gripper to be commanded to use. A
new server was created in Matlab and the C++ software to
control the gripper, so that it could open and close the gripper
using a command in Matlab. Next, the object localization
was applied in the partially-implemented findObjs.m script
we were provided with, and the coordinates of the centroids
of the objects were converted into task-space using T robotcam .
Using these object locations, we were then able to apply the
trajectory-planning principles used in previous labs to create a
trajectory between the arm’s current location and the location
of the object. This object is then be grasped by the gripper
using the set_gripper command, and then based on the
color of the object, the object is moved to a new location. This
script is designed to continually move objects until there are
none left in the workspace.

C. Calculations

1) Forward Kinematics: The forward kinematics can be
calculated using the DH parameters shown in Table I, which
were determined by the reference frames established in Fig-
ure 4.

Fig. 4. Reference Frames of Joints in Home Position



TABLE I
DH PARAMETERS OF ROBOTIC ARM

θ d a α

θ1 L1 0 −π
2

θ2 0 L2 0
θ3 + π

2
0 L3 0

Using these DH parameters, the transformation matrices
between the different reference frames can be calculated as
follows:

T 1
0 =


c1 −s1c−π

2
s1s−π

2
0c1

s1 c1c−π
2

−c1s−π
2

0s1
0 s−π

2
c−π

2
L1

0 0 0 1



T 1
0 =


c1 0 −s1 0
s1 0 c1 0
0 −1 0 L1

0 0 0 1

 (1)

T 2
1 =


c2 −s2c0 s2s0 L2c2
s2 c2c0 −c2s0 L2s2
0 s0 c0 0
0 0 0 1



T 2
1 =


c2 −s2 0 L2c2
s2 c2 0 L2s2
0 0 1 0
0 0 0 1

 (2)

T 3
2 =


c3π2 −s3π2 c0 s3π2 s0 L3c3π2
s3π2 c3π2 c0 −c3π2 s0 L3s3π2
0 s0 c0 0
0 0 0 1



T 3
2 =


−s3 −c3 0 −L3s3
c3 −s3 0 L3c3
0 0 1 0
0 0 0 1

 (3)

The transformation matrix between the base and the effector
of the robotic arm can be calculated by multiplying the
individual transformation matrices of the joints in Equations
1, 2 and 3.

T 3
0 = T 1

0 T
2
1 T

3
2 = T 2

0 T
3
2

T 2
0 = T 1

0 T
2
1

=


c1 0 −s1 0
s1 0 c1 0
0 −1 0 L1

0 0 0 1



c2 −s2 0 L2c2
s2 c2 0 L2s2
0 0 1 0
0 0 0 1



=


c1c2 −c1s2 −s1 L2c1c2
s1c2 −s1s2 c1 L2s1c2
−s2 −c2 0 −L2s2 + L1

0 0 0 1

 (4)

T 3
0 = T 2

0 T
3
2

=


c1c2 −c1s2 −s1 L2c1c2
s1c2 −s1s2 c1 L2s1c2
−s2 −c2 0 −L2s2 + L1

0 0 0 1



−s3 −c3 0 −L3s3
c3 −s3 0 L3c3
0 0 1 0
0 0 0 1



=


−c1c2s3 − c1s2c3 −c1c2c3 + c1s2s3 −s1 −L3c1c2s3 − L3c1s2c3 + L2c1c2
−s1c2s3 − s1s2c3 −s1c2c3 + s1s2s3 c1 −L3s1c2s3 − L3s1s2c3 + L2s1c2

s2s3 − c2c3 s2c3 + c2s3 0 L3s2s3 − L3c2c3 − L2s2 + L1

0 0 0 1

 (5)

Using Equation 5, the position of the effector in task-space
can be calculated using the first three entries in the last column,
and plugging in the joint angles of each of the three joints on
the arm. The result of this operation will be a column vector
with the x- y- and z- coordinates of the effector in task-space.

2) Inverse Kinematics: The inverse kinematics of the base
joint can be solved for geometrically using the 3D represen-
tation of the arm in joint space shown in Figure 5.



Fig. 5. Geometric Inverse Kinematics Base Joint Angle

The relationship between the angle of joint 1 and the
position of the end effector in task space can be represented
by:

θ1 = atan2(y0, x0) (6)

The inverse kinematics of joints 2 and 3 can be solved
geometrically using a 2D representation of the arm in joint
space, using a reference frame placed on the second joint. In
this case, two cases should be considered: both when the end
effector is below the second joint, and when it is above the
second joint, as shown in Figure 6.

Fig. 6. Geometric Inverse Kinematics Joints 2 and 3

Using these graphical representation, θ2 can be taken as:

θ2 = −(α+ β)

where:

α = atan2

(
(z0 − L1),

√
x20 + y20

)

r2 = x20 + (z0 − L1)
2 + y20

cosβ =
r2 + L2

2 − L2
3

2rL2

β = arccos

(
r2 + L2

2 − L2
3

2rL2

)
Thus, θ2 is defined as:

θ2 =−
(
atan2

(
(z0 − L1),

√
x20 + y20

)
(7)

+arccos
r2 + L2

2 − L2
3

2rL2

)
θ3 can be found in a similar manner.

cos
(
−θ3 +

π

2

)
=
L2
2 + L2

3 − r2

2L2L3

θ3 = − arccos

(
L2
2 + L2

3 − r2

2L2L3

)
+
π

2
(8)

In conjunction with the task-space coordinates of the end
effector of the robotic arm, Equations 6, 7, and 8 can then be
used to find the corresponding joint-space coordinates.

3) Jacobian: In general, the Jacobian is defined as:

J(q) =

[
Jp
Jo

]
Here, Jp is:

Jp =
[
δPe
δθ1

δPe
δθ2

δPe
δθ3

]
,

wherePe = T 3
0 (1 : 3, end) and T 3

0 = T 1
0 T

2
1 T

3
2

Using the equation of the transformation matrix between
the base joint and the end effector, Equation 5, the matrix Pe
can be calculated as follows:

Pe = T 3
0 (1 : 3, end)

=

−L3c1c2s3 − L3c1s2c3 + L2c1c2
−L3s1c2s3 − L3s1s2c3 + L2s1c2
L3s2s3 − L3c2c3 − L2s2 + L1


The partial derivatives of Pe can then be calculated, with

respect to the generalized joint variables, θ1, θ2, and θ3.

δPe
δθ1

=

 L3s1c2s3 + L3s1s2c3 − L2s1c2
−L3c1c2s3 − L3c1s2c3 + L2c1c2

0


δPe
δθ2

=

L3c1s2s3 − L3c1c2c3 − L2c1s2
L3s1s2s3 − L3s1c2c3 − L2s1s2

L3c2s3 + L3s2c3 − L2c2


δPe
δθ3

=

−L3c1c2c3 + L3c1s2s3
−L3s1c2c3 + L3s1s2s3

L3s2c3 + L3c2s3





Using the partial derivatives, the position portion of the Jacobian matrix, Jp is then found to be:

Jp =

 L3s1c2s3 + L3s1s2c3 − L2s1c2 L3c1s2s3 − L3c1c2c3 − L2c1s2 −L3c1c2c3 + L3c1s2s3
−L3c1c2s3 − L3c1s2c3 + L2c1c2 L3s1s2s3 − L3s1c2c3 − L2s1s2 −L3s1c2c3 + L3s1s2s3

0 L3c2s3 + L3s2c3 − L2c2 L3s2c3 + L3c2s3


Then, the orientation-portion of the Jacobian matrix, which is defined as:

Jo =
[
T 0
0 (1 : 3, end− 1) T 1

0 (1 : 3, end− 1) T 2
0 (1 : 3, end− 1)

]
is found to be:

Jo =

0 −s1 −s1
0 c1 c1
1 0 0


Using Jo and Jp, the full Jacobian matrix is then found to be:

J(q) =


L3s1c2s3 + L3s1s2c3 − L2s1c2 L3c1s2s3 − L3c1c2c3 − L2c1s2 −L3c1c2c3 + L3c1s2s3
−L3c1c2s3 − L3c1s2c3 + L2c1c2 L3s1s2s3 − L3s1c2c3 − L2s1s2 −L3s1c2c3 + L3s1s2s3

0 L3c2s3 + L3s2c3 − L2c2 L3s2c3 + L3c2s3
0 −s1 −s1
0 c1 c1
1 0 0

 (9)

4) Force/Torque Relationship: Using the Jacobian, a sim-
plistic relation between generalized joint forces and task-space
forces can be obtained according to the relationship defined
in Equation 10

TODO: Graphic showing orientation of forces

τ = J(q)Tp Ftip

=

 L3s1c2s3 + L3s1s2c3 − L2s1c2 L3c1s2s3 − L3c1c2c3 − L2c1s2 −L3c1c2c3 + L3c1s2s3
−L3c1c2s3 − L3c1s2c3 + L2c1c2 L3s1s2s3 − L3s1c2c3 − L2s1s2 −L3s1c2c3 + L3s1s2s3

0 L3c2s3 + L3s2c3 − L2c2 L3s2c3 + L3c2s3

 0
Fg
0


(10)

Where Fg is defined as the force of gravity applied at the
tip

III. RESULTS

IV. DISCUSSION

V. CONCLUSION



VI. AUTHORSHIP

Section Authors Notes

Abstract Teresa Saddler
Introduction Benjamin Ward

Methodology Teresa Saddler
Benjamin Ward

Teresa: calculations, lab procedure
Benjamin: flowcharts, system design, calculations

Results N/A N/A
Discussion N/A N/A
Conclusions N/A N/A


	Introduction
	Methodology
	System Design
	High-level Control Software
	Low-level Real-time Software

	Lab Procedure
	Calculations
	Forward Kinematics
	Inverse Kinematics
	Jacobian
	Force/Torque Relationship


	Results
	Discussion
	Conclusion
	Authorship

