
Final Report

RBE 2001 C02

Authors:

Jason Conklin Teresa Saddler Benjamin Ward

Submitted On: March 1, 2019

Abstract

An autonomous robotic system was designed and constructed to collect and replace solar

panel simulacrum, constructed of 6061 aluminum and PLA plastic, on a roof structure, at

various angles. The robot was required to respond to emergency start and fault-clearing

commands, and to receive information from the field simulator about solar panel status.

A 4-bar linkage was selected as the primary actuation mechanism due to its reduced

torque requirements compared to a simple arm and its restricted and well-defined path of

motion. A drivetrain with two-wheel-drive and a ball castor was chosen for controllability,

since it neatly centered the virtual turning center of the robot between the two driven

wheels. For both mechanisms, transmissions were selected to maximize power delivered to

the output and ensure controllable linear and angular speeds.

Total power draw was restricted based upon physical battery limitations, and total

operation time was targeted at a minimum of 10 minutes.

Overall robot design and construction proceeded taking into consideration physical con-

straints, material and component cost, and cost of machining time. Material and machining

costs were minimized via use of simple 2D and 3D CNC fabrication methods (laser cutting

and 3d printing).

Programming proceeded by taking into account the overall task requirements, utilizing

a flow diagram to organize common tasks into repeatable code blocks. Various sensors,

including encoders and an infrared reflectance sensor array, were used to supplement and

integrate knowledge about the robot’s environment into the system.

Successful robot completion occurred, taking into account an extended deadline. All

major tasks were completed in full. ”Nice-to-have” tasks were not completed.

ii

Table of Contents

Abstract ii

Table of Contents iii

List of Figures iv

List of Tables v

1 Introduction 1

2 Methodology 2

3 Analysis 3

4 Results & Discussion 16

5 Conclusions 20

Comments 20

Appendices 22
Appendix 1: Four-Bar Mechanism Exploded View and Bill of Materials 22
Appendix 2: Force Analysis 24
Appendix 3: Linkage Transmission Calculations 30
Appendix 4: Center of Mass Locations 34
Appendix 5: High-level Sequence of Events 37
Appendix 6: Code 38
Appendix 7: Contributions 57

iii

List of Figures

1 The full challenge field in one possible starting configuration 1
2 Grabber in Open and Closed Positions 5
3 Graphical linkage synthesis results in SolidWorks 6
4 Free body diagram of the lift four-bar linkage 7
5 Dimensions for lift mechanism velocity analysis using method of instanta-

neous centers 8
6 Free body diagram of the grabber four-bar linkage 9
7 Linkage CAD model based upon linkage synthesis 10
8 View of SolidWorks CAD model of final design of robot with the linkage

extended 12
9 View of SolidWorks CAD model of final design of robot with the linkage down 13
10 Basic Flow Diagram Approximating state Machine 16
11 SolidWorks CAD model representing our robot after adjustments were made

to account for errors in design, with the parts changed highlighted in green 17
12 Code Snippet Showing Line-following Logic 18
13 Our Robot Placing a Collector Panel 19
14 Rear view of exploded linkage 22
15 Robot CAD model with center of mass marked when in staging area pick-up

configuration holding aluminum solar collector panel 34
16 Robot CAD model with center of mass marked when in 25deg roof structure

angle configuration holding aluminum solar collector panel 35
17 Robot CAD model with center of mass marked when in 45deg roof structure

angle configuration holding aluminum solar collector panel 36

iv

List of Tables

1 Point distribution of challenge 4
2 Current Draw of Electrical Components 14
3 Team member contributions for lab and final project 57

v

1 Introduction

Figure 1: The full challenge field in one possible starting configuration

In this project we were required to design and create an autonomous robotic system

which was able to place solar collector panels, represented by aluminum and plastic plates,

on a roof structure at angles of 25 and 45 degrees and with a clearance height of 12.087in.

The roof structure had two spots on each side, one empty and one populated with one of

the solar collector panels, resulting in a starting configuration such as the one seen in Figure

1. Also located on the field are black tape lines in the positions represented in Figure 1 and

guidance rails leading to the roof structure from either staging area. The robot was limited

to the use of four motors, and was required to use a four-bar mechanism. The robot was

required to autonomously collect a solar collector panel from one staging area and place it

on the empty spot on the roof, then remove the solar collector panel on the other spot and

place it in the staging area. This process had to be done for each side of the roof structure,

with an optional goal of being able to carry out this routine without resetting the robot on

the other side of the field by driving the robot under the roof structure.

While this task was carried out autonomously, the robot had to be able to respond to

emergency start and restart commands and also to receive information on which spots on

the roof structure were empty, the angle of the roof on the starting side, and the type of

1

collector on the starting side. Additionally, the robot had to be able to receive information

about when it was safe to release and grip solar collector panels on the roof structure. These

commands all had to be communicated via Wi-Fi from the field controller application.

2 Methodology

We began by creating a specific strategy to narrow the constraints for the robot design, and

by clarifying parameters on the challenge, such as robot size and time limits. To determine

our strategy, we studied the possible points we could achieve and assessed any trade-offs

with complications the different challenge elements could introduce. After studying these

trade studies, we decided on our main priorities and our additional objectives.

From there, we designed our four-bar linkage using the process of graphical linkage

synthesis, wherein we used the provided field CAD models to determine the joint locations

for the four-bar linkage. This was done by constraining the chosen grabbing mechanism

cross-section to the required positions, specifically in positions that allowed it to place the

solar collector plates on the staging area, and both sides of the roof structure. We then made

construction lines connecting the joints of the grabber in each of the three positions and

constructed perpendicular bisectors from these connecting lines. Where the bisectors from

corresponding joints intersected was where the crank and follower joints would be located

on the robot. Using this process, we were able to identify optimal joint locations and crank

and follower link lengths.

Using this four-bar design, we did a force analysis on both the lifting and gripping

mechanisms in maximum torque positions. To do this, we created free body diagrams

of both the grabber mechanism and the four-bar mechanism and using the known forces

acting on both mechanisms, found the forces on the joints and the required torques on the

cranks. Using that required torque, we were able to calculate the forces acting on the gear

teeth in the transmission of the four-bar linkage, and the torque requirements of the motors

controlling the four-bar linkage and the grabber mechanism. Further, using the the power

curve of the motor controlling the four-bar linkage, we were able to determine the speed

of the motor, and therefore the speeds of the linkage components, when in the maximum

2

torque position.

Once we had verified our four-bar linkage design, we were able to impose further con-

straints on our drive system, which enabled us to fit our drivetrain around the physical

linkage dimensions. We created a design and were able to analyze the maximum speed

of our transmission considering the motor free speed and transmission efficiency, and also

assess the power requirement of the motor at slip and stall.

Then, based on the mechanical systems on our robot, we selected appropriate sensors

necessary to complete the task. Using our selected sensors and the previous calculations for

the power requirements of the drivetrain, we were then able to calculate both the current and

power requirements at steady-state and peak conditions for the system. Current and power

draw of electronic components at steady-state and peak conditions were determined using

knowledge of use and published information/specifications of the electronic components.

With the physical design completed and verified, we finalized the the CAD representation

of the robot to ensure that the center of mass in all conditions remained in a stable position.

To do this, we simply ensured that all component masses were correct and had SolidWorks

determine the center of mass of the robot in all necessary positions, particularly in the

maximum reach position of the aluminum solar collection panel.

Finally, based on the mechanical capabilities of the robot design, and our sensor selec-

tions, as well as the project requirements, we designed a state machine for programming

the robot tasks. To do this, we determined at the lowest level the different “states” of the

robot, or in other words, the different combinations of actions that needed to be triggered

at any given moment in the robot operation. We then determined how these states related,

and created a graphical representation of the state machine for guidance when programming

showing the different states with arrows denoting their relationships.

3 Analysis

We carried out a trade study based on the different objectives of the project in order to hone

our strategy. We based our trade study on the robot demo rubric provided to us, excluding

the “Overall Design” and and “Innovation/Creativity” categories, a summary of which can

3

T
a
b

le
1
:

P
o
in

t
d

is
tr

ib
u

ti
o
n

o
f

ch
a
ll

en
g
e

C
a
te

g
o
ry

D
es

cr
ip

ti
o
n

W
ei

g
h
te

d

P
o
in

ts

R
el

ia
b
il
it

y
-

M
ec

h
a
n
ic

a
l

R
a
te

th
e

re
li
a
b
il
it

y
o
f

th
e

m
ec

h
a
n
ic

a
l

a
sp

ec
ts

o
f

th
e

ro
b

o
t.

S
o
li
d
ly

m
a
d
e

a
n
d

w
o
rk

in
g

w
el

l

w
o
u
ld

ra
te

a
fu

ll
sc

o
re

.
C

o
n
st

a
n
tl

y
ja

m
m

in
g

a
n
d
/
o
r

fa
ll
in

g
a
p
a
rt

w
o
u
ld

ra
te

a
0
.

1
5

R
el

ia
b
il
it

y
-

C
o
n
tr

o
l

P
ro

g
ra

m
R

a
te

th
e

re
li
a
b
il
it

y
o
f

th
e

co
n
tr

o
l

(s
o
ft

w
a
re

)
a
sp

ec
ts

o
f

th
e

ro
b

o
t.

T
h
is

is
fr

o
m

th
e

o
b
se

rv
ed

b
eh

av
io

rs
.

1
5

M
ec

h
-

D
y
n
a
m

ic
s

H
ow

w
el

l
w

er
e

fo
rc

es
/
to

rq
u
es

a
cc

o
u
n
te

d
fo

r?
D

o
es

th
e

d
es

ig
n

in
d
ic

a
te

a
n

aw
a
re

n
es

s
o
f

a
n
d

a
tt

em
p
t

to
d
ea

l
w

it
h

fo
rc

es
,

m
o
m

en
t

a
rm

s,
et

c.
?

1
5

M
ec

h
-

G
ri

p
p

er
D

es
ig

n
&

O
p

er
a
ti

o
n

Is
th

e
g
ri

p
p

er
d
es

ig
n

su
it

a
b
le

fo
r

th
e

ta
sk

?
H

ow
w

el
l

d
o
es

th
e

g
ri

p
p

er
w

o
rk

?
D

o
es

th
e

g
ri

p
p

er

d
es

ig
n

d
et

ra
ct

fr
o
m

it
s

o
p

er
a
ti

o
n
?

1
5

E
le

ct
ri

ca
l

-
N

ea
tn

es
s

H
a
s

th
er

e
b

ee
n

a
n

a
tt

em
p
t

to
ti

d
y

u
p

th
e

w
ir

in
g

a
n
d

k
ee

p
it

n
ea

t?
L

a
b

el
li
n
g

w
ir

es
sh

o
u
ld

a
d
d

to
th

is
sc

o
re

(b
u
t

n
o
t

d
et

ra
ct

if
n
o
t

p
re

se
n
t)

.
1
5

L
in

e
F

o
ll
ow

in
g
/
P

o
si

ti
o
n

A
cc

u
ra

cy
If

th
e

ro
b

o
t

tr
a
ck

s
w

el
l,

m
a
k
es

a
cc

u
ra

te
tu

rn
s,

a
n
d

p
o
si

ti
o
n
s

it
se

lf
w

el
l,

th
en

aw
a
rd

a
fu

ll
sc

o
re

.

If
it

ca
n
’t

st
ay

o
n

co
u
rs

e
o
r

m
a
k
e

a
n

a
cc

u
ra

te
tu

rn
n
o

m
a
tt

er
w

h
a
t,

th
en

aw
a
rd

a
0
.

3
0

S
ta

rt
in

g
In

fo
C

o
m

m
u
n
ic

a
ti

o
n

R
o
b

o
t

is
a
b
le

to
re

ce
iv

e
em

p
ty

sp
o
t

lo
ca

ti
o
n
,

ro
o
f

a
n
g
le

,
a
n
d

co
ll
ec

to
r

ty
p

e
in

fo
rm

a
ti

o
n

fr
o
m

fi
el

d
1
0

E
m

er
g
en

cy
S
to

p
C

o
m

m
a
n
d

R
o
b

o
t

is
a
b
le

to
re

ce
iv

e
em

er
g
en

cy
st

o
p

co
m

m
a
n
d

a
n
d

re
su

m
e

in
te

rr
u
p
te

d
ta

sk
1
0

C
o
ll
ec

to
r

M
a
n
ip

u
la

ti
o
n

R
o
b

o
t

is
a
b
le

to
m

a
n
ip

u
la

te
b

o
th

ty
p

es
o
f

co
ll
ec

to
rs

4
0

S
ta

g
in

g
A

re
a

P
ic

k
U

p
R

o
b

o
t

is
a
b
le

to
p
ic

k
u
p

n
ew

co
ll
ec

to
r

fr
o
m

st
a
g
in

g
a
re

a
1
0

2
5

D
eg

re
e

P
la

ce
m

en
t

R
o
b

o
t

is
a
b
le

to
p
la

ce
n
ew

co
ll
ec

to
r

o
n

2
5
-d

eg
re

e
ro

o
f

w
it

h
re

q
u
ir

ed
p
a
u
se

b
ef

o
re

re
le

a
si

n
g

1
0

2
5

D
eg

re
e

P
ic

k
U

p
R

o
b

o
t

is
a
b
le

to
re

m
ov

e
o
ld

co
ll
ec

to
r

fr
o
m

2
5
-d

eg
re

e
ro

o
f

(w
it

h
re

q
u
ir

ed
p
a
u
se

b
ef

o
re

re
m

ov
in

g

o
n
ce

g
ri

p
p

er
h
a
s

cl
o
se

d
o
n

p
la

te
)

3
0

4
5

D
eg

re
e

P
la

ce
m

en
t

R
o
b

o
t

is
a
b
le

to
p
la

ce
n
ew

co
ll
ec

to
r

o
n

4
5
-d

eg
re

e
ro

o
f

w
it

h
re

q
u
ir

ed
p
a
u
se

b
ef

o
re

re
le

a
si

n
g

3
0

4
5

D
eg

re
e

P
ic

k
U

p
R

o
b

o
t

is
a
b
le

to
re

m
ov

e
o
ld

co
ll
ec

to
r

o
n

4
5
-d

eg
re

e
ro

o
f

(w
it

h
re

q
u
ir

ed
p
a
u
se

b
ef

o
re

re
m

ov
in

g

o
n
ce

g
ri

p
p

er
h
a
s

cl
o
se

d
o
n

p
la

te
)

2
0

N
o

R
es

et
B

o
n
u
s

p
o
in

ts
fo

r
co

m
p
le

ti
n
g

b
o
th

si
d
es

o
f

th
e

fi
el

d
in

o
n
e

a
u
to

n
o
m

o
u
s

m
is

si
o
n

5
0

4

be found in Table 1. Using this point distribution, we were able to identify our priorities

and decide whether objectives introduced undue complexity that made them undesirable

and not worth their potential points.

Based on the point distribution, we made the decision to prioritize making as simple

a robot as possible to complete the course in full. We also decided to aim for a robot

that could complete the course without reset, because we did not anticipate that it would

over-complicate the design or interfere with other design objectives; however, it was only

a secondary objective since getting these bonus points required being able to complete the

other course-related objectives.

After deciding our strategy, we began designing our four-bar linkage. To do this, we

constructed our grabber geometry, based upon the “Bottom Out Grabber” design provided

to us (which can be seen in Figure 2), in a sketch on top of the field CAD provided to us. We

made three of these grabber sketches, and constrained them each to positions in which the

robot needs to grip plates, specifically where the plate is on the 25 degree roof, the 45 degree

roof and the staging area. We then connected the joints of these sketches using construction

lines, and constructed perpendicular bisectors of these lines. The remaining joints for the

four-bar linkage were located at the intersection of the corresponding bisectors. We then

found an optimal configuration in which both of the found joints remained below the lowest

point of the roof, as seen in Figure 3. Using these joints, we were able to both find the link

lengths, which were 7.73” for the top link and 6.18” for the bottom link, and the required

height of the grounded joints above the field.

Figure 2: Grabber in Open and Closed Positions

We then did a force analysis of a four-bar linkage in this configuration with the bottom

link positioned horizontal to the base plate. To do this, we created a free body diagram of the

5

Figure 3: Graphical linkage synthesis results in SolidWorks

entire system as seen in Figure 4, and derived equations of equilibrium for the system. Then,

we broke the system down into smaller components and carried out the same process. The

calculations in full can be found in Appendix 2. Using our generated system of equations,

we were able to find the moment around the crank joint, τlift, and the forces on each of the

links, Axl, Ayl, Bxl, Byl, Cxl, Cyl, Dxl and Dyl:

Axl = −2.41 lbf Ayl = −0.54 lbf

Bxl = 2.41 lbf Byl = 3.31 lbf

Cxl = 2.41 lbf Cyl = 3.49 lbf

Dxl = −2.41 lbf Dyl = −0.40 lbf

τlift = 21.00 in · lbf

We chose a transmission by determining the minimum gear ratio and the maximum

controllable speed. The full calculations can be found in Appendix 3. To find the minimum

gear ratio, we used the formula:

eminlift
=

τS
τlift

η (1)

6

Figure 4: Free body diagram of the lift four-bar linkage

where τS is the stall torque of the motor and η is the efficiency. We found the minimum

gear ratio eminlift
= 0.353. To find the gear ratio with the maximum controllable speed, we

used the equation:

eideal =
ωideal

ωmax power
(2)

where ωideal, the maximum controllable speed, is defined as 20 degrees
sec and ωmax power is

the angular speed of the motor at maximum power, which is defined as:

ωmax power =
ωfree

2
(3)

where ωfree is the motor free speed. We found the gear ratio with the maximum controllable

speed to be eideal = 0.033. We picked a gear ratio of 324:7056 (or 1: 21.7777), which is

between the minimum and controllable speeds and allows us to use standard 20DP gears

which fit into our physical constraints with a double-stage 18:84 gear reduction.

Additionally, we found the speed of the linkage components in the maximum torque

position by using the method of instantaneous centers. The full calculations can be found

in Appendix 3. We found the instantaneous center of links 2 and 4, as seen in Figure 5, and

using Tlift we found the instantaneous velocities of each link. We found the instantaneous

7

velocities at maximum torque VA, VB , and VP to be:

VA = 5.2
in

sec

VB = 4.734
in

sec

VP = 5.66
in

sec

Figure 5: Dimensions for lift mechanism velocity analysis using method of instantaneous

centers

Similarly, we completed a force analysis of the grabber mechanism, starting with creating

a free body diagram of the entire system as seen in Figure 6. The full calculations can be

found in Appendix 2. We proceeded to use the same method as in the four-bar linkage to

calculate the torque at the crank joint τgrabber, and the forces at the joints Axg, Ayg, Bxg,

Byg, Cxg, Cyg, Dxg and Dyg:

Axg = −1.23 lbf Ayg = 2.33 lbf

Bxg = 1.23 lbf Byg = 0.08 lbf

Cxg = 1.23 lbf Cyg = 0.23 lbf

Dxg = −1.23 lbf Dyg = 2.58 lbf

8

Figure 6: Free body diagram of the grabber four-bar linkage

τgrabber = −1.09 in · lbf

Using the measurements obtained from the graphical linkage synthesis, we then designed

the linkage in CAD. To ensure clearance of the physical links, we made the top link curved,

while keeping the direct distance between the joints on the top link the same as determined

in the graphical linkage synthesis, as can be seen in Figure 7. The exploded view of our

four-bar linkage and the bill of materials can be found in Appendix 1.

To ensure that our transmission would endure the challenge, we calculated the shear

forces on the gear teeth and the factor of safety associated with our chosen material. Specif-

ically, we looked at the last gear in the transmission, an 84-tooth connected to the bottom

link of the four-bar linkage, because its material was the most had the lowest yield strength,

9

Figure 7: Linkage CAD model based upon linkage synthesis

and rather being thick and made only of PLA as the other gears were, it would be made

of 1/4” (nominal) birch plywood plated on each face with thin sheets of PLA. To calculate

the forces on these teeth, we used the equation:

Fteeth =
τlift
rpitch

(4)

where rpitch, the pitch radius, is defined as:

rpitch =
t

2P
(5)

where t is the number of teeth on the gear, and P is the diametral pitch of the gear. Based

on the forces calculated, the sheer stress on the gear teeth had a factor of safety of over 2.

Full calculations can be found in Appendix 3.

Maximum current draw was calculated based on torque applied to the motor at the

10

position of maximum torque on the crank (when it is extended parallel to the field), using

the equation:

Ilinkagemax
=
Tmotorload

Tmotorstall

(Istall − Ifree) + Ifree + Igrippermax
(6)

Full calculations can be found in Appendix 3. We found the maximum current draw,

Ilinkagemax
, to be:

Ilinkagemax = 0.88 A+ 500 mA = 1.38 A

We continued by imposing constraints on our drivetrain. We intended to use the rails to

guide our robot in a straight line as it approached the roof structure and ensure precision

location with respect to the roof structure. In order to do this, we were able to constrain the

width of the robot to 12 inches, not including the rail riders, which would align the center

of the robot with the center of the solar collector plate.

With these constraints, we then were able to design our drivetrain and transmission.

We chose to have front wheel drive with one ball castor in the back-center of the robot.

To choose a transmission, we determined the minimum gear ratio which we calculated the

minimum gear ratio using the formula:

emindrive
=

TS
Tfmax

η (7)

where TS is the motor stall torque, Tfmax
is the maximum torque resisting friction, and η

is the efficiency.

We determined a maximum “ideal” gear ratio assuming a controllable speed of 10 in
sec ,

at maximum mechanical power:

Tmaxpower
=
TS
2

= 85 ozf · in (8)

ωmaxpower
=
ωfree

2
= 100 rpm (9)

ωideal =
10 in

sec

dwheel
= 183.364

deg

sec
(10)

eideal =
ωideal

ωmaxpower

= 0.306 (11)

where ωfree is the free speed of the motor and dwheel is the wheel diameter in inches.

11

We selected a 18:54 ratio (1:3) transmission in order to balance speed and controllability,

with our focus being on controllability since speed was not an essential component of the

challenge. This ratio is between the controllable ratio and the minimum ratio, and errs

on the side of the controllable ratio. Using the weight of the robot as calculated in our

SolidWorks model, the transmission, the robot design and the motor specifications, we were

then able to calculate the maximum speed of the robot and the power requirement of the

robot at both slip and stall. To calculate the max speed, we converted motor free (angular)

speed to linear speed:

v =free
dwheel

2
ωfreeedrivetrain = 10.908

in

sec
(12)

vmax = vfreeη = 10.363
in

sec
(13)

where edrivetrain is the overall drivetrain gear ratio, and η is the efficiency. This physical

design of our robot being finished, we were able to render it as a CAD model, as seen in

Figures 8 and 9.

Figure 8: View of SolidWorks CAD model of final design of robot with the linkage extended

12

Figure 9: View of SolidWorks CAD model of final design of robot with the linkage down

Power requirements were determined using the calculated gear ratio. Since the maximum

torque due to friction is less than the stall torque, the robot is guaranteed to slip instead of

stall.

Toutputstall
=

TS
e.drivetrain

= 31.875 in · lbf (14)

If the two motors on the drivetrain were to stall, the current drawn would be:

Istall = 2IS = 10 A (15)

where IS is the stall current of one motor.

The current drawn at slip is maximized when the resistive torque due to friction is

13

maximum.

Tloadmotor
= Tfrictionmax

edrivetrain = 1.872 in · lbf (16)

Iloadmotor
=
Tloadmotor

TS
(IS − Ifree) + Ifree = 1.128 A (17)

Islip = 2 ∗ Iloadmotor
= 2.257 A (18)

Overall power requirements were based on several factors: peak drivetrain current draw,

peak lift linkage current draw, and steady-state current for electronics components.

Pmax = Vref (Islip + Ilinkagemax
+ Isteadystate) = Vref (2.257 A+ 1.38 A+ 155 mA)

= Vref (3.792 A) = 45.504 W
(19)

where Vref is 12V, aka 8x 1.5V 2Ah rechargeable batteries.

The steady-state current calculations are based on manufacturer specifications for idle

current draw in each of the electronic components, given by:

Iidle =

n∑
i

Ii (20)

where Ii is the idle current draw for the component i. In this case the components sum as

outlined in Table 2.

Table 2: Current Draw of Electrical Components

Component Current Draw

ESP32 25 mA

WiFi Reciever 100 mA

Encoders 30 mA

Iidle = 25 mA+ 100 mA+ 30 mAIidle = 155 mA (21)

Given an ideal 12V Battery pack with a capacity of 2Ah, the total energy the pack can

provide is given by:

E = Pt = VrefIt

E = (12 V)(2 Ah)(
3600 s

1 h
)

E = 86.4 kJ

(22)

14

Now that we know the energy the pack can provide, we can divide by the power require-

ment to determine operation time. Steady state requirements:

t =
E

P
=

E

V I

t =
86.4 kJ

(12 V)(0.155 A)
∗ 1 hr

3600 s

t = 12.9 hr

(23)

As we can see in the equation above, running at only steady-state, the battery will last

for about 12 hours, 54 minutes.

Peak requirements:

t =
E

P
=

E

Pmax

t =
86.4 kJ

45.504 W
∗ 1 min

60 s

t = 31.6 min

(24)

Even at a constant max current draw, the battery pack will still allow 31 minutes of

operation, more than enough time to complete the challenge. This exceeds the goal of 10

minutes - the maximum time allocated to complete the entire list of tasks.

To program the robot, we implemented a simple state machine. To create this, we

outlined and categorized the tasks that our robot had to carry out, the list of which can be

found in Appendix 5. An innovation our team added was to “layer” certain states, allowing

for reuse of the same state with slightly different parameters. In the case of line following,

we needed the robot to reuse the same procedure each time it followed a line, but to alter

its direction, correctional amount, and next state depending on its progress in completing

the mission. We used this idea for several states, including line following, and transitions

between perpendicular lines. Due to this “layered” approach, our robot followed a fairly

simple procedure as outlined in Figure 10.

First, the robot would pickup a panel from the safe zone. Next, the robot would search

for the perpendicular line leading to the appropriate position as received from the field

controller. Again, the robot would follow a line to the appropriate perpendicular line to

perform new collector panel dropoff, before repeating the process in reverse to arrive at

the other position for old panel pickup, and finally, back to the safe zone for old panel

15

Figure 10: Basic Flow Diagram Approximating state Machine

dropoff. This basic process relies heavily on repeated task of line following, line counting,

and switching between crossing lines, which Figure 10 loosely demonstrates.

4 Results & Discussion

We found during the testing and demonstrations of the different systems of our robot that

many of our calculations and predictions were accurate, while others were inaccurate or

required adjustment. In order to account for our inaccuracies, we had to make some minor

changes to our robot design, as seen in Figure 11

This experience demonstrated to each of us that the real world is “messy” and that our

predictions are not always perfect in describing the behavior of the dynamic systems and

processes that make up a robot.

Concerning one of our primary strategies, following field lines for navigation, we had

mostly positive results. The difference in reflectance of the black tape and light-tan wood

of the field allowed our robot to quantitatively distinguish between them.

In order to accurately follow a line across the field, we implemented code that would

correct the position of the robot relative to the line based on the values read from the sensors

16

Figure 11: SolidWorks CAD model representing our robot after adjustments were made to

account for errors in design, with the parts changed highlighted in green

at any time. Depending on the direction of travel, if the two infrared light sensors returned

greatly differing values, then the appropriate wheel’s position was adjusted to “straighten

out” the the robot chassis relative to the line being followed. The basic logic behind this

method of line following is demonstrated in Figure 12.

The success of this method was mixed. In most cases, the “straightening out” action of

this method of line following helped the robot assume a correct orientation for retrieval and

deposit of the collector panels; however, this method also resulted in the occasional over-

correction, which could slow the approach, or in certain cases, direct the robot off-course.

17

Figure 12: Code Snippet Showing Line-following Logic

We used the Reflectance Sensor Array included in our kit of parts for another similar

purpose: line counting. By recording when both sensors reported a value consistent with

black tape simultaneously, we could detect the presence of a perpendicular line, and use this

information to inform the robot’s state machine program.

The four-bar mechanism we designed for lifting the collector panels to the appropriate

positions functioned almost flawlessly after manufacture. The coupler / grabber combo

proved excellently suited for the tasks of both placing and picking up collector panels. We

found that during the coding process, we had no problems related to the linkage not reaching

the correct positions for panel pickup and dropoff. As seen in Figure 13, the positions

provided by the linkage configuration were so accurate that our robot simply positioned

itself directly in front of the roof and lowered the collector panel by rotating the crank. This

action positioned the collector panel onto its pegs.

One issue we encountered while testing our linkage was with our crank gears. The

plywood we used for our crank link/driven gear combination had an actual thickness that

was less than its nominal thickness, which led to decreased resistance to shear, and ultimately

resulted in minor chipping of gear teeth. The problem was exacerbated by an unaccounted

for toggle position of the linkage, which occurred due to the curved top links. While the

curvature did provide clearance as desired, it also created a toggle point with joints on the

bottom link, which if entered, caused the bottom link to not be able to drive the linkage any

longer. If this was done while the bottom link was driven, the teeth of the stationary gear on

the bottom link would be placed under a high amount of stress. In order to counteract this

problem, we created plastic reinforcements, that when aligned and attached to our wooden

18

Figure 13: Our Robot Placing a Collector Panel

crank/gear, provided the strength necessary to resist shear. Additionally, to prevent the

linkage from entering the toggle position, we prevented it in code using the encoder on the

linkage motor.

We decided to use one of the provided grabber designs, which had mixed results. The

design allowed us to easily control grabber position with a servo motor, but had physical

limitations in length and width, that limited its ability to grip the collectors. By using

strips of cardboard taped together, we modified the grabber’s spacing, allowing for tight

grip of the collector panels. This “custom-made” grabbing technique improved the overall

capability of the robot, since loose collector panels were not an issue.

The manufacture of our robot went smoothly. We created a horizontal standoff-based

design using Birch plywood and the popular-with-FIRST “churros”. The churros are alu-

minum hex shafts that provide dual function as both standoffs and axles in our robot design.

The churros are lightweight, strong, and simple to cut, which made them an excellent part

for our build. We tapped the churros ourselves to allow for accurate placement of threads for

assembly. The sheets of birch plywood that comprised the surfaces of the robot were glued

together using wood glue for added strength. This combination materials and methods of

19

construction allowed us to assemble our robot rapidly, with not much time spent waiting for

3D printed parts. In addition, the robot chassis was strong, lightweight, and flexible, giving

us a robust and damage-resistant chassis to work with.

Our robot performed well for the majority of assigned tasks, once it was fully assembled.

Initially, we had difficulty with PID tuning, but that issue was solved by using different

sets of PID gain values for different collector types. In addition, much trial-and-error was

required to adjust the line following program to achieve correct orientation correction and

horizontal line counting.

5 Conclusions

Overall, the project was a success as we were able to achieve all of our major objectives

with minor adjustments made to our initial design. While we were unable to earn the

points for presenting early or completing the entire challenge in one run, with the extended

deadline we were not only able to complete the major tasks, but do so smoothly and without

user-adjustment.

Given additional time, and continued access to the robot, the main improvements to

be made on our robot are continuing work on the code so that all tasks can be completed

in one run, and improvement of the line-following so that the robot runs smoother and

faster. Additionally, the rail riders should be re-designed to work properly to allow the

robot to forego line-following as it approaches the roof structure, and the gripper should be

replaced with a more permanent solution to the spacing issues that made it difficult to pick

up plates. As-is, our project, while not wholly successful, is very successful in completing

the challenge tasks in isolation and with minor improvements would be a highly effective

system for completion of the challenge tasks.

Comments

The dimensions were incorrect when using the field CAD for reference. In particular, we took

the width of the rails from the CAD, and created our rail riders around this dimension. We

only realized after printing that this was not accurate to the actual design of the field. The

20

CAD should be an accurate representation of the field. If it is not, proper documentation

should be clearly provided accordingly. While the rails were not necessary for the success

of our project, this is an unnecessary hassle and obstacle to teams.

Wear and tear on the field caused some problems with line following, especially where

the field surface or tape made navigation difficult.

The term project was a very good application of concepts learned in class, especially

the math-heavy sections. The PDR should have been earlier, but the CDR and FDR were

well-timed relative to the fast pace of the course.

In our kit, we were supplied an analog servo instead of a digital servo, which caused us

to waste over four valuable hours on Wednesday night due to a massive amount of time

spent troubleshooting. The code we were given was not able to properly control the servo,

while a new Arduino sketch worked fine. There should be very clear documentation about

this possibility, and any supplier issues (cheap is not necessarily good!) should be resolved

so it doesn’t happen to another unwary team.

The servo also did not work with our code until we attached it again in our own code.

For purposes of the project and class in general, a semi-comprehensive powerpoint or

other documentation covering concepts expected for class (especially the types of math for

mechanism analysis) would have been very useful.

We had several problems with the ESP32. One of the pins we were told to use for the

H-Bridge did not work (we switched it to another pin successfully). There should be more

documentation on the ESP32 timers and how they related to PWM pins, and which can be

used. We also had several instances of a smoking ESP32, even without making any obvious

errors (once in the middle of Lab 4, once in the middle of testing for final project). We had

to replace the ESP32 during Lab 4, which made it impossible to meet the original deadline

- neither us nor Kevin could figure out why it was damaged.

The example robot base was wired incorrectly, and was a poor reference. Wiring dia-

grams on GitHub were also unclear.

Wire wrapping was an arbitrary and inefficient way to make connections. We often had

issues with loose wires even when a sufficient number of well-done wraps. The wires were

inevitably very messy, even when zip-tied or taped.

21

Appendices

Appendix 1: Four-Bar Mechanism Exploded View and Bill of Ma-

terials

Figure 14: Rear view of exploded linkage

22

2
4

6

7

11
12

1

5

8

39

ITE
M

 N
O

.
PA

RT
 N

UM
BE

R
Q

TY
.

M
A

TE
RI

A
L

C
O

ST
EX

T.
 C

O
ST

W
EI

G
HT

(L

BS
)

EX
T.

 W
EI

G
HT

 (L
BS

)

1
G

RA
BB

ER
1

$0
.0

0
0.

00

 G
RA

BB
ER

_B
O

D
Y

1
PL

A
$3

.3
1

$3
.3

1
0.

24
3

0.
24

 G
RI

PP
ER

1
PL

A
$1

.0
1

$1
.0

1
0.

07
4

0.
07

 L
IN

K
1

PL
A

$0
.0

7
$0

.0
7

0.
00

5
0.

01
 S

ER
V

O
1

N
/A

$9
.7

5
$9

.7
5

0.
13

7
0.

14
 S

ER
V

O
_H

O
RN

1
PL

A
$0

.0
0

$0
.0

0
0.

00
2

0.
00

 M

6
X

30
m

m
 S

C
RE

W
2

BL
A

C
K

O
XI

D
E

A
LL

O
Y

ST
EE

L
$0

.1
6

$0
.3

2
0.

00
0.

00
2

TO
P_

LI
N

K
2

1/
4"

 B
IR

C
H

PL
YW

O
O

D
$0

.1
3

$0
.2

6
0.

05
0

0.
10

3
BO

TT
O

M
 L

IN
K

2
1/

4"
 B

IR
C

H
PL

YW
O

O
D

$0
.2

2
$0

.4
4

0.
08

0
0.

16

4
4-

27
2I

N
_C

HU
RR

O
2

60
05

A
 A

LU
M

IN
UM

$1
.4

2
$2

.8
4

0.
02

1
0.

04
5

5-
07

2I
N

_C
HU

RR
O

1
60

05
A

 A
LU

M
IN

UM
$1

.6
9

$1
.6

9
0.

02
0

0.
02

6
1/

4"
 F

LA
T

W
A

SH
ER

6
ST

A
IN

LE
SS

 S
TE

EL
$0

.0
3

$0
.1

8
0.

00
0.

00
7

1/
4"

-2
0

SC
RE

W
6

BL
A

C
K

O
XI

D
E

A
LL

O
Y

ST
EE

L
$0

.1
9

$1
.1

4
0.

00
0.

00
8

SP
A

C
ER

-6
m

m
_I

D
-0

-2
IN

4
PL

A
$0

.0
1

$0
.0

4
0.

00
1

0.
00

9
M

6
X

30
m

m
 S

C
RE

W
4

BL
A

C
K

O
XI

D
E

A
LL

O
Y

ST
EE

L
$0

.1
6

$0
.6

4
0.

00
0.

00
10

84
T_

20
_D

P_
RE

IN
FO

RC
EM

EN
T

4
PL

A
$0

.3
3

$1
.3

2
0.

02
4

0.
08

11
6X

12
X4

 F
LA

N
G

ED
 B

EA
RI

N
G

4
N

/A
$2

.0
0

$8
.0

0
0.

00
1

0.
00

12
M

3
X

10
m

m
 S

C
RE

W
7

A
LL

O
Y

ST
EE

L
0.

08
$0

.5
6

0.
00

0.
00

A

SS
EM

BL
Y

C
O

ST

$3
1.

57
A

SS
EM

BL
Y

W
EI

G
HT

0.

86

TE
A

M
 2

SC
A

LE
:

1:
7

FI
N

A
L

PR
O

JE
C

T
LI

N
KA

G
E

3/
2/

19
SO

LI
D

W
O

RK
S

Ed
uc

at
io

na
l P

ro
du

ct
. F

or
 In

st
ru

ct
io

na
l U

se
 O

nl
y.

Appendix 2: Force Analysis

Lift Mechanism Force Analysis

24

25

26

Grabber Mechanism Force Analysis

27

28

29

Appendix 3: Linkage Transmission Calculations

Lift Gear Ratio

30

Gear Tooth Shear Forces

31

Lift Mechanism Current Draw

Lift Mechanism Instantaneous Center Velocity Analysis

32

33

Appendix 4: Center of Mass Locations

Figure 15: Robot CAD model with center of mass marked when in staging area pick-up

configuration holding aluminum solar collector panel

34

Figure 16: Robot CAD model with center of mass marked when in 25deg roof structure

angle configuration holding aluminum solar collector panel

35

Figure 17: Robot CAD model with center of mass marked when in 45deg roof structure

angle configuration holding aluminum solar collector panel

36

Appendix 5: High-level Sequence of Events

The general sequence of events once a pick order is received is as follows:

• Send Pick Order

• Grab station plate

• Pick up

• Navigate to the position commanded

• Wait for dropoff approval

• Drop off

• Let go

• Back up to line

• Navigate to the next position

• Wait for pickup approval

• Pick up

• Navigate to base station

• Wait for dropoff approval

• Drop off

At the end of the sequence, the robot may either remain at the base station or travel

under the field roof to repeat the process on the other side.

37

Appendix 6: Code

38

/*
 * StudentsRobot.cpp
 *
 * Created on: Dec 28, 2018
 * Author: hephaestus
 */

#include "StudentsRobot.h"

StudentsRobot::StudentsRobot(ServoEncoderPIDMotor * motor1,
ServoEncoderPIDMotor * motor2, HBridgeEncoderPIDMotor * motor3,
Servo * servo) {

Serial.println("StudentsRobot::StudentsRobot called here ");
this->servo = servo;
this->motor1 = motor1;
this->motor2 = motor2;
this->motor3 = motor3;

// Set the PID Clock gating rate. Thie must be 10 times slower than the motors
update rate

motor1->myPID.sampleRateMs = 30; // 330hz servo, 3ms update, 30 ms PID
motor2->myPID.sampleRateMs = 30; // 330hz servo, 3ms update, 30 ms PID
motor3->myPID.sampleRateMs = 1; // 10khz H-Bridge, 0.1ms update, 1 ms PID
// Set default P.I.D gains
motor1->SetTunings(0.15, 0.0001, 1.6);
motor2->SetTunings(0.15, 0.0001, 1.6);
motor3->SetTunings(0.01, 0.0001, 0.6);

// After attach, compute ratios and bounding
double motorToWheel = 3;
motor1->setOutputBoundingValues(0, //the minimum value that the output takes (Full

reverse)
180, //the maximum value the output takes (Full forward)
90, //the value of the output to stop moving
1, //a positive value added to the stop value to creep forwards
1, //a positive value subtracted from stop value to creep backward
16.0 * // Encoder CPR

50.0 * // Motor Gear box ratio
motorToWheel * // motor to wheel stage ratio
(1.0 / 360.0) * // degrees per revolution
motor1->encoder.countsMode, // Number of edges

that are used to increment the value
117.5 * // Measured max RPM

(1 / 60.0) * // Convert to seconds
(1 / motorToWheel) * // motor to wheel ratio
360.0); // convert to degrees

motor2->setOutputBoundingValues(0, //the minimum value that the output takes (Full
reverse)

180, //the maximum value the output takes (Full forward)
90, //the value of the output to stop moving
1, //a positive value added to the stop value to creep forwards
1, //a positive value subtracted from stop value to creep backward
16.0 * // Encoder CPR

50.0 * // Motor Gear box ratio
motorToWheel * // motor to wheel stage ratio
(1.0 / 360.0) * // degrees per revolution
motor2->encoder.countsMode, // Number of edges

that are used to increment the value
117.5 * // Measured max RPM

(1 / 60.0) * // Convert to seconds

https://raw.githubusercontent.com/RBE200x-lab/RBE2001Code02/maste...

1 of 10 3/3/2019, 11:47 PM

(1 / motorToWheel) * // motor to wheel ratio
360.0); // convert to degrees

motor3->setOutputBoundingValues(-255, //the minimum value that the output takes
(Full reverse)

255, //the maximum value the output takes (Full forward)
0, //the value of the output to stop moving
1, //a positive value added to the stop value to creep forwards
1, //a positive value subtracted from stop value to creep backward
16.0 * // Encoder CPR

50.0 * // Motor Gear box ratio
1.0 * // motor to arm stage ratio
(1.0 / 360.0) * // degrees per revolution
motor3->encoder.countsMode, // Number of edges

that are used to increment the value
117.5 * // Measured max RPM

(1 / 60.0) * // Convert to seconds
360.0); // convert to degrees

chassis = new DrivingChassis(motor1, motor2, WHEEL_TRACK, WHEEL_RADIUS);
lineFollower = new LineFollow(chassis);

// Set up the line tracker

pinMode(LINE_SENSE_ONE, ANALOG);
pinMode(LINE_SENSE_TWO, ANALOG);
pinMode(EMITTER_PIN, OUTPUT);

 //pinMode(SERVO_PIN, OUTPUT);
 pinMode(MOTOR3_ENABLE_PIN, OUTPUT);
 pinMode(MOTOR3_DIR, OUTPUT);
servo->setPeriodHertz(50);
servo->attach(SERVO_PIN);
 servo->write(GRABBER_CLOSED);
}
/**
 * Seperate from running the motor control,
 * update the state machine for running the final project code here
 */

 int timeIdx = 0;
 long time1 = 0;
 double values[400][2];

void StudentsRobot::updateStateMachine() {

long now = millis();

switch (status) {
case StartupRobot:
Serial.println("State Machine Startup");

myCommandsStatus = Ready_for_new_task;
 digitalWrite(EMITTER_PIN, HIGH); // turn on IR LEDs
 digitalWrite(MOTOR3_ENABLE_PIN, HIGH); // enable HBridge

 lastStatus = StartupRobot;
 nextStatus = PickupPanelStart;
 status = WAIT_FOR_PICKORDER; // wait for control station info

break;

case StartRunning:
 myCommandsStatus = Heading_to_pickup;
 //servo->write(GRABBER_OPEN);

https://raw.githubusercontent.com/RBE200x-lab/RBE2001Code02/maste...

2 of 10 3/3/2019, 11:47 PM

 float val;
 if(roofAngle == 45){
 val = ENCODER_POS_45;
 }else if(roofAngle == 25){
 val = ENCODER_POS_25;
 }
 lineFollower->lineCount = 0;
 lineFollower->NUM_LINES_LANE / roofPos;
 motor3->startInterpolationDegrees(val, 5000, SIN);
 nextStatus = LF_Forward4_Init;
 status = WAIT_FOR_MOTORS_TO_FINISH;

 break;

case PlacePanel:
myCommandsStatus = Waiting_for_approval_to_dropoff;

//determine appropriate angle to dropoff panel
float placeAngle;
if(roofAngle == 45){

placeAngle = ENCODER_POS_45;
}else if(roofAngle == 25){

placeAngle = ENCODER_POS_25;
}
//move grabber to correct position
motor3->startInterpolationDegrees(placeAngle, 2000, SIN);
nextStatus = Transition_Post_Dropoff;
lastStatus = PlacePanel;
status = WAIT_FOR_APPROVE; //wait for approval to release
break;

case PlacePanelFinal:
myCommandsStatus = Dropping_off;
chassis->driveForward(-75, 1000); // backup as panel goes down to have

correct spacing
motor3->startInterpolationDegrees(0, 5000, SIN); //slowly place panel down
nextStatus = Halting;
lastStatus = PlacePanelFinal;
status = WAIT_FOR_MOTORS_TO_FINISH;
break;

case PickupPanel:

myCommandsStatus = Waiting_for_approval_to_pickup;
chassis->driveForward(75, 1000); // drive forward from line into correct

position
nextStatus = Transition_Post_Pickup;
lastStatus = PickupPanel;
status = WAIT_FOR_APPROVE; //wait for operator approval
break;

case Transition_Post_Dropoff:
myCommandsStatus = Dropping_off;
servo->write(GRABBER_OPEN); // release panel
numLines=NUM_LINES_RETURN_DROPOFF; //adjust line target for return
lineFollower->lineCount = 0; //reset line counter
motor3->startInterpolationDegrees(ENCODER_POS_MAX, 5000, SIN); //move

grabber off of panel
chassis->driveForward(-50,1000); //backup from line
nextStatus = LF_Backup2_Init; //begin backup
lastStatus = Transition_Post_Dropoff;
status = WAIT_FOR_MOTORS_TO_FINISH;
break;

case Transition_Post_Pickup:
myCommandsStatus = Heading_to_safe_zone;
servo->write(GRABBER_CLOSED); //grip panel
lineFollower->lineCount = 0; //reset line counter

https://raw.githubusercontent.com/RBE200x-lab/RBE2001Code02/maste...

3 of 10 3/3/2019, 11:47 PM

lineFollower->numLines =NUM_LINES_LANE; //adjust line target for return

//pick up panel
motor3->startInterpolationDegrees(ENCODER_POS_MAX, 5000, SIN);
nextStatus = LF_Backup3_Init;
lastStatus = Transition_Post_Pickup;
status = WAIT_FOR_MOTORS_TO_FINISH;
break;

case PickupPanelStart:
//lift panel slowly

 motor3->startInterpolationDegrees(ENCODER_POS_MAX, 5000, SIN)
 lastStatus = PickupPanelStart;
 nextStatus = LF_Backup_Init;
 status = WAIT_FOR_MOTORS_TO_FINISH;
 break;

/* The following two states work in conjunction with one another.
LF_Backup_Init moves the robot backward slightly, and then transitions to
LF_Backup_Detect, which checks for the current line following status, and then

transitions back to
LF_Backup_Init. The loop is broken once the correct number of horizontal lines

have been detected
Additionally, after a horizontal line is detected, the CountLineReverse state may

be entered to avoid double-counting
*/

case LF_Backup_Init:
Serial.println("State: Backup_Init");
chassis->driveForward(-10, 0); // move backward slightly
lastStatus = LF_Backup_Init;
status = LF_Backup_Detect; //next, check line following status

break;

 case LF_Backup_Detect:

 Serial.println("State: Backup_Detect");
 //Uncomment line below for debugging purposes
 //lineFollower->readSensors();

 //check for horizontal line
 if(lineFollower->sensor1Val >= lineFollower->BLACK && lineFollower->sensor2Val >=
lineFollower->BLACK){
 lineCount++; //increment line counter

 if(roofPos == lineCount){ //check if current line is the right one
 nextStatus = LF_Transition_1; //begin the switch to crossing line
 status = STOP;
 }
 else{ //take appropriate action to resume looking for hoz. lines
 status = CountLineReverse;
 }
 }
 else{

 //chassis tilted clockwise relative to line
 if(lineFollower->sensor1Val >= lineFollower->BLACK && lineFollower->sensor2Val <=
lineFollower->WHITE){
 //straighten out -- rotate left wheel backward
 motor1->startInterpolationDegrees(motor1->getAngleDegrees() - 60, 1000, SIN);
 }
 //chassis tilted counterclockwise relative to line
 else if(lineFollower->sensor1Val <= lineFollower->WHITE && lineFollower->sensor2Val >=
lineFollower->BLACK){
 //straighten out -- rotate right wheel backward
 motor2->startInterpolationDegrees(motor2->getAngleDegrees() - 60, 1000, SIN);

https://raw.githubusercontent.com/RBE200x-lab/RBE2001Code02/maste...

4 of 10 3/3/2019, 11:47 PM

 }
 lastStatus = LF_Backup_Detect;
 nextStatus = LF_Backup_Init; //loop
 status = WAIT_FOR_MOTORS_TO_FINISH;
 }
 break;

 case LF_Transition_2: //part 2 of the transition between backing up from staging area
and dropoff

 Serial.println("State: LF_Transition_2");
 lineFollower->lineCount = 0; //reset line counter
 lineFollower->numLines =NUM_LINES_LANE;//adjust lines target for roof lane

 chassis->driveForward(50, 1000); //scoot off of line
 nextStatus = LF_Forward_Init;
 status = WAIT_FOR_MOTORS_TO_FINISH;
 lastStatus = LF_Transition_2;
 break;
 case LF_Transition_1: //part 1 of the transition between backing up from staging area
and dropoff
 Serial.println("State: LF_Transition_1");
 chassis->turnDegrees(95, 4000); //turn to line up with roof lane line
 nextStatus = LF_Transition_2;
 status = WAIT_FOR_MOTORS_TO_FINISH;
 lastStatus = LF_Transition_1;
 break;

case LF_Transition2_1: //part 1 of the transition between backing up from dropoff and
navigating to pickup lane

 Serial.println("State: LF_Transition2_1");
 chassis->driveForward(15, 1000);
 nextStatus = LF_Transition2_2;
 status = WAIT_FOR_MOTORS_TO_FINISH;
 lastStatus = LF_Transition2_1;
 break;
 case LF_Transition2_2: //part 2 of the transition between backing up from dropoff and
navigating to pickup lane

 Serial.println("State: LF_Transition2_2");
 chassis->turnDegrees(90, 4000); // turns from current lane back onto crossing line
 //set number of lines opposite of pos value so robot goes to correct second spot
 lineFollower->numLines =1;
 if(roofPos == 1){
 lineFollower->numLines =2;
 }
 nextStatus = LF_Forward2_Init;
 status = WAIT_FOR_MOTORS_TO_FINISH;
 lastStatus = LF_Transition2_2;
 break;

case LF_Transition3_1: //part 1 of the transition between moving forward from the crossing
line and to pickup lane
 lineFollower->lineCount = 0; //reset line count
 Serial.println("State: LF_Transition3_1");
 chassis->driveForward(-10, 1000); //move VTC to line before turn
 nextStatus = LF_Transition3_2;
 status = WAIT_FOR_MOTORS_TO_FINISH;
 lastStatus = LF_Transition3_1;
 break;
 case LF_Transition3_2: //part 2 of the transition between moving forward from the
crossing line and to pickup lane

 Serial.println("State: LF_Transition3_2");
 chassis->turnDegrees(90, 4000); //turn onto the pickup lane line

https://raw.githubusercontent.com/RBE200x-lab/RBE2001Code02/maste...

5 of 10 3/3/2019, 11:47 PM

 numLines=NUM_LINES_LANE;
 nextStatus = LF_Forward4_Init;

 status = WAIT_FOR_MOTORS_TO_FINISH;
 lastStatus = LF_Transition3_2;
 break;

 /* The following two states work in conjunction with one another.
 LF_Forward_Init moves the robot forward slightly, and then transitions to
 LF_Forward_Detect, which checks for the current line following status, and then
transitions back to
 LF_Forward_Init. The loop is broken once the correct number of horizontal lines
have been detected
 Additionally, after a horizontal line is detected, the CountLine state may be
entered to avoid double-counting
 */

 case LF_Forward_Init: //state used by the robot to get from cross line to the correct
position for collector placement

 Serial.println("State: LF_Forward_Init");
 followLineDrive(&status, &nextStatus,LF_Forward_Detect, WAIT_FOR_MOTORS_TO_FINISH,50);
 lastStatus = LF_Forward_Init;
 break;
 case LF_Forward_Detect:

Serial.println("State: LF_Forward_Detect");
 lastStatus = LF_Forward_Detect; //state that checks and corrects line alignment until
correct number of horizontal lines crossed
 //Uncomment below for debugging
 //lineFollower->readSensors();
 followLineDetect(&status, &nextStatus, WAIT_FOR_MOTORS_TO_FINISH, LF_Forward_Init,
 CountLine, LF_Transition_1,-60);
 break;
 case LF_Forward2_Init:

 Serial.println("State: LF_Forward2_Init");
 followLineDrive(&status, &nextStatus,LF_Forward2_Detect,
WAIT_FOR_MOTORS_TO_FINISH,dirMult*50);
 lastStatus = LF_Forward2_Init;
 break;
 case LF_Forward2_Detect:
 lastStatus = LF_Forward2_Detect;
 Serial.println("State: LF_Forward2_Detect");
 followLineDetect(&status, &nextStatus, WAIT_FOR_MOTORS_TO_FINISH, LF_Forward2_Init,
 CountLine, LF_Transition3_1,-60);
 break;

 case LF_Forward3_Init:

 Serial.println("State: LF_Forward_Init");
 followLineDrive(&status, &nextStatus,LF_Forward3_Detect,
WAIT_FOR_MOTORS_TO_FINISH,25);
 lastStatus = LF_Forward3_Init;
 break;
 case LF_Forward3_Detect:
 lastStatus = LF_Forward3_Detect;
 Serial.println("State: LF_Forward3_Detect");
 lineFollower->readSensors();
 followLineDetect(&status, &nextStatus, WAIT_FOR_MOTORS_TO_FINISH, LF_Forward3_Init,
 CountLinee, PickupPanel,-60);

case LF_Backup3_Init:

https://raw.githubusercontent.com/RBE200x-lab/RBE2001Code02/maste...

6 of 10 3/3/2019, 11:47 PM

 lastStatus = LF_Backup3_Init;
 Serial.println("State: Backup3_Init");
 followLineDrive(&status, &nextStatus,LF_Backup3_Detect,
WAIT_FOR_MOTORS_TO_FINISH,-10);

 break;
 case LF_Backup3_Detect:
 lastStatus = LF_Backup3_Detect;
 Serial.println("State: Backup_Detect");
 lineFollower->readSensors();
 followLineDetect(&status, &nextStatus, WAIT_FOR_MOTORS_TO_FINISH, LF_Backup3_Init,
 CountLineReverse, LF_Transition3_1,-60);
 break;

case LF_Forward4_Init:

 Serial.println("State: LF_Forward4_Init");
 followLineDrive(&status, &nextStatus,LF_Forward4_Detect,
WAIT_FOR_MOTORS_TO_FINISH,25);
 lastStatus = LF_Forward4_Init;
 break;
 case LF_Forward4_Detect:

 followLineDetect(&status, &nextStatus, WAIT_FOR_MOTORS_TO_FINISH,
LF_Forward4_Init,

 CountLine, PlacePanelFinal, -60); break;

 case CountLine:
 motor1->stop();
 motor2->stop();
 Serial.printf("LINE COUNT %d\n", lineCount);
 //lastStatus = CountLine;
 chassis->driveForward(25, 1000);
 //nextStatus = LF_Forward_Detect;
 nextTime=millis()+2000;
 status = WAIT_FOR_TIME;
 lastStatus = CountLine;
 break;
 case CountLineReverse:
 motor1->stop();
 motor2->stop();
 //Serial.printf("LINE COUNT %d\n", lineCount);
 //lastStatus = CountLine;
 chassis->driveForward(-25, 1000);
 //nextStatus = LF_Forward_Detect;
 nextTime=millis()+2000;
 //status = WAIT_FOR_MOTORS_TO_FINISH;
 status = WAIT_FOR_TIME;
 lastStatus = CountLineReverse;
 break;
 case LF_Backup2_Init:
 lastStatus = LF_Backup2_Init;
 Serial.println("State: Backup2_Init");
 followLineDrive(&status, &nextStatus,LF_Backup2_Detect,
WAIT_FOR_MOTORS_TO_FINISH,-50);

 break;
 case LF_Backup2_Detect:
 lastStatus = LF_Backup2_Detect;
 Serial.println("State: Backup_Detect");
 lineFollower->readSensors();
 followLineDetect(&status, &nextStatus, WAIT_FOR_MOTORS_TO_FINISH, LF_Backup2_Init,

CountLineReverse, LF_Transition2_1,-60);
 break;

https://raw.githubusercontent.com/RBE200x-lab/RBE2001Code02/maste...

7 of 10 3/3/2019, 11:47 PM

case WAIT_FOR_TIME:

// Check to see if enough time has elapsed
if (nextTime <= millis()) {

// if the time is up, move on to the next state
status = nextStatus;

}
 lastStatus = WAIT_FOR_TIME;

break;
case WAIT_FOR_MOTORS_TO_FINISH:

 //Serial.println("State: WAIT_FOR_MOTORS_TO_FINISH");
 //Serial.println(motor3->getAngleDegrees());

if (chassis->isChassisDoneDriving() && motor3->isInterpolationDone()) {
status = nextStatus;

}
 lastStatus = WAIT_FOR_MOTORS_TO_FINISH;

break;
 case WAIT_FOR_APPROVE:
 //Serial.println("State: WAIT_FOR_MOTORS_TO_FINISH");
 //Serial.println(motor3->getAngleDegrees());
 if (approve) {
 approve = false;
 status = nextStatus;
 }
 lastStatus = WAIT_FOR_APPROVE;
 break;

 case WAIT_FOR_PICKORDER:
 //Serial.println("State: WAIT_FOR_MOTORS_TO_FINISH");
 //Serial.println(motor3->getAngleDegrees());
 if (pickorder) {
 pickorder = false;
 status = nextStatus;
 }
 lastStatus = WAIT_FOR_APPROVE;
 break;
 case STOP:
 Serial.println("State: STOP");
 motor3->stop();
 motor2->stop();
 motor1->stop();
 status = nextStatus;
 lastStatus = STOP;
 break;

case Halting:
 servo->write(GRABBER_OPEN);

myCommandsStatus = Fault_obstructed_path;
// save state and enter safe mode
Serial.println("Halting State machine");
digitalWrite(EMITTER_PIN, 0);
motor3->stop();
motor2->stop();
motor1->stop();
status = Halt;
break;

case Halt:
// in safe mode
break;

}
}

/**
 * This is run fast and should return fast
 *

https://raw.githubusercontent.com/RBE200x-lab/RBE2001Code02/maste...

8 of 10 3/3/2019, 11:47 PM

 * You call the PIDMotor's loop function. This will update the whole motor control system
 * This will read from the concoder and write to the motors and handle the hardware
interface.
 * Instead of allowing this to be called by the controller yopu may call these from a
timer interrupt.
 */
void StudentsRobot::pidLoop() {

motor1->loop();
motor2->loop();
motor3->loop();

}
/**
 * Approve
 *
 * @param buffer A buffer of floats containing nothing
 *
 * the is the event of the Approve button pressed in the GUI
 *
 * This function is called via coms.server() in:
 * @see RobotControlCenter::fastLoop
 */
void StudentsRobot::Approve(float * buffer) {

// approve the procession to new state
Serial.println("StudentsRobot::Approve");

 approve = true;
/*if (myCommandsStatus == Waiting_for_approval_to_pickup) {

myCommandsStatus = Waiting_for_approval_to_dropoff;
} else {

myCommandsStatus = Ready_for_new_task;
}*/

}
/**
 * ClearFaults
 *
 * @param buffer A buffer of floats containing nothing
 *
 * this represents the event of the clear faults button press in the gui
 *
 * This function is called via coms.server() in:
 * @see RobotControlCenter::fastLoop
 */
void StudentsRobot::ClearFaults(float * buffer) {

Serial.println("StudentsRobot::ClearFaults");

 Serial.printf("status: %d\n", status);
//myCommandsStatus = Ready_for_new_task;
status = lastStatus;

}

/**
 * EStop
 *
 * @param buffer A buffer of floats containing nothing
 *
 * this represents the event of the EStop button press in the gui
 *
 * This is called whrn the estop in the GUI is pressed
 * All motors shuld hault and lock in position
 * Motors should not go idle and drop the plate
 *
 * This function is called via coms.server() in:
 * @see RobotControlCenter::fastLoop
 */
void StudentsRobot::EStop(float * buffer) {

https://raw.githubusercontent.com/RBE200x-lab/RBE2001Code02/maste...

9 of 10 3/3/2019, 11:47 PM

// Stop the robot immediatly
Serial.println("StudentsRobot::EStop");

 Serial.printf("status: %d\n", status);
myCommandsStatus = Fault_E_Stop_pressed;
status = Halting;

}
/**
 * PickOrder
 *
 * @param buffer A buffer of floats containing the pick order data
 *
 * buffer[0] is the material, aluminum or plastic.
 * buffer[1] is the drop off angle 25 or 45 degrees
 * buffer[2] is the drop off position 1, or 2
 *
 * This function is called via coms.server() in:
 * @see RobotControlCenter::fastLoop
 */
void StudentsRobot::PickOrder(float * buffer) {

pickorder = true;

material = buffer[0];
roofAngle = buffer[1];
roofPos = buffer[2];

 if(roofPos == 1){
 dirMult = -1;
 }else{
 dirMult = 1;
 }

 if(material == ALUMINUM){
 motor3->SetTunings(KP_ALUM, KI_ALUM, KD_ALUM);
 }
 else if(material == PLASTIC){
 motor3->SetTunings(KP_PLASTIC, KI_PLASTIC, KD_PLASTIC);
 }

//myCommandsStatus = Waiting_for_approval_to_pickup;
}

https://raw.githubusercontent.com/RBE200x-lab/RBE2001Code02/maste...

10 of 10 3/3/2019, 11:47 PM

 /*
 * config.h
 *
 * Created on: Nov 5, 2018
 * Author: hephaestus
 */

#ifndef SRC_CONFIG_H_
#define SRC_CONFIG_H_

#define TEAM_NAME "Team2"

#define USE_WIFI

//
#define WHEEL_TRACK 260
#define WHEEL_RADIUS (3.165*25.4/2.0)
//Line Following
#define NUM_LINES_LANE 4
#define NUM_LINES_CROSS 1
#define TURN_ANGLE 90
#define OFFSET = -10;

//PID vals
#define KP_PLASTIC 0.001
#define KI_PLASTIC 0.0001
#define KD_PLASTIC 0.9
#define KP_ALUM 0.01
#define KI_ALUM 0.0001
#define KD_ALUM 0.6

//Materials
#define ALUMINUM 1.00
#define PLASTIC 0.00
// Pins

/**
 * Drive motor 1 Servo PWM pin
 */
#define MOTOR1_PWM 15
/**
 * Drive motor 2 Servo PWM pin
 */
#define MOTOR2_PWM 4
/**
 * Drive motor 3 10Khz full duty PWM pin
 */
#define MOTOR3_PWM 12
/**
 * Pin for setting the direction of the H-Bridge
 */
#define MOTOR3_DIR 26
#define MOTOR3_ENABLE_PIN 13

//Encoder pins
#define MOTOR1_ENCA 18
#define MOTOR1_ENCB 19

#define MOTOR2_ENCA 17
#define MOTOR2_ENCB 16

#define MOTOR3_ENCA 27
#define MOTOR3_ENCB 14

https://raw.githubusercontent.com/RBE200x-lab/RBE2001Code02/maste...

1 of 2 3/3/2019, 11:48 PM

#define ENCODER_POS_45 1850.0
#define ENCODER_POS_25 3580.0
#define ENCODER_POS_MAX 3400.0
// Line Sensor Pins
#define LINE_SENSE_ONE 36
#define LINE_SENSE_TWO 39
#define EMITTER_PIN 34 // emitter is controlled by digital pin

/**
 * Gripper pin for Servo
 */
#define SERVO_PIN 5
#define GRABBER_OPEN 110
#define GRABBER_CLOSED 180

#endif /* SRC_CONFIG_H_ */

https://raw.githubusercontent.com/RBE200x-lab/RBE2001Code02/maste...

2 of 2 3/3/2019, 11:48 PM

/*
 * DrivingChassis.cpp
 *
 * Created on: Jan 31, 2019
 * Author: hephaestus
 */

#include "DriveChassis.h"
#include <math.h>

/**
 * Compute a delta in wheel angle to traverse a specific distance
 *
 * arc length = 2* π* R* (C/360)
 *
 * C is the central angle of the arc in degrees
 * R is the radius of the arc
 * π is Pi
 *
 * @param distance a distance for this wheel to travel in MM
 * @return the wheel angle delta in degrees
 */
float DrivingChassis::distanceToWheelAngle(float distance) {

float deltaAngle = (distance / mywheelRadiusMM) * (180 / M_PI);
return deltaAngle;

}

/**
 * Compute the arch length distance the wheel needs to travel through to rotate the base
 * through a given number of degrees.
 *
 * arc length = 2* π* R* (C/360)
 *
 * C is the central angle of the arc in degrees
 * R is the radius of the arc
 * π is Pi
 *
 * @param angle is the angle the base should be rotated by
 * @return is the linear distance the wheel needs to travel given the this CHassis's wheel
track
 */
float DrivingChassis::chassisRotationToWheelDistance(float angle) {

float arcLength = 2 * M_PI * (mywheelTrackMM / 2) * (angle / 360);
return arcLength;

}

DrivingChassis::~DrivingChassis() {
// do nothing

}

/**
 * DrivingChassis encapsulates a 2 wheel differential steered chassis that drives around
 *
 * @param left the left motor
 * @param right the right motor
 * @param wheelTrackMM is the measurment in milimeters of the distance from the left wheel
contact point to the right wheels contact point
 * @param wheelRadiusMM is the measurment in milimeters of the radius of the wheels
 */
DrivingChassis::DrivingChassis(PIDMotor * left, PIDMotor * right,

float wheelTrackMM, float wheelRadiusMM) {
myleft = left;
myright = right;
mywheelTrackMM = wheelTrackMM;

https://raw.githubusercontent.com/RBE200x-lab/RBE2001Code02/mast...

1 of 3 3/3/2019, 11:46 PM

mywheelRadiusMM = wheelRadiusMM;

}

/**
 * Start a drive forward action
 *
 * @param mmDistanceFromCurrent is the distance the mobile base should drive forward
 * @param msDuration is the time in miliseconds that the drive action should take
 *
 * @note this function is fast-return and should not block
 */
void DrivingChassis::driveForward(float mmDistanceFromCurrent, int msDuration) {

myleft->startInterpolationDegrees(myleft->getAngleDegrees() +
distanceToWheelAngle(mmDistanceFromCurrent), msDuration, SIN);

myright->startInterpolationDegrees(myright->getAngleDegrees() +
distanceToWheelAngle(mmDistanceFromCurrent), msDuration, SIN);
}

/**
 * Start a turn action
 *
 * This action rotates the robot around the center line made up by the contact points of
the left and right wheels.
 * Positive angles should rotate to the left
 *
 * This rotation is a positive rotation about the Z axis of the robot.
 *
 * @param degreesToRotateBase the number of degrees to rotate
 * @param msDuration is the time in milliseconds that the drive action should take
 *
 * @note this function is fast-return and should not block
 */
void DrivingChassis::turnDegrees(float degreesToRotateBase, int msDuration) {

//if(degreesToRotateBase > 0){
myright->startInterpolationDegrees(myright->getAngleDegrees() +

distanceToWheelAngle(chassisRotationToWheelDistance(degreesToRotateBase)), msDuration,
SIN);
 myleft->startInterpolationDegrees(myleft->getAngleDegrees() -
distanceToWheelAngle(chassisRotationToWheelDistance(degreesToRotateBase)), msDuration,
SIN);

/*}else{
 myright->startInterpolationDegrees(myright->getAngleDegrees() -
distanceToWheelAngle(chassisRotationToWheelDistance(degreesToRotateBase)), msDuration,
SIN);

myleft->startInterpolationDegrees(myleft->getAngleDegrees() +
distanceToWheelAngle(chassisRotationToWheelDistance(degreesToRotateBase)), msDuration,
SIN);

}*/

}

/**
 * Check to see if the chassis is performing an action
 *
 * @return false is the chassis is driving, true is the chassis msDuration has elapsed
 *
 * @note this function is fast-return and should not block
 */
bool DrivingChassis::isChassisDoneDriving() {

return (myleft->isInterpolationDone() && myright->isInterpolationDone());

https://raw.githubusercontent.com/RBE200x-lab/RBE2001Code02/mast...

2 of 3 3/3/2019, 11:46 PM

}

https://raw.githubusercontent.com/RBE200x-lab/RBE2001Code02/mast...

3 of 3 3/3/2019, 11:46 PM

/*
 * LineFollow.cpp
 *
 * Created on: Feb 22, 2019
 * Author: jaconkliun
 */

#include "LineFollow.h"
#include "Arduino.h"
#include "StudentsRobot.h"

LineFollow::~LineFollow() {
 // do nothing
}

LineFollow::LineFollow(DrivingChassis *achassis){
this->chassis = achassis;

 this->sensor1Val = 0;
 this->sensor2Val = 0;
 this->lineCount = 0;
 this->numLines = 0;

}
/**
 * read read sensor(s) and update values
 */
void LineFollow::readSensors(){

sensor1Val = analogRead(LINE_SENSE_ONE);
sensor2Val = analogRead(LINE_SENSE_TWO);

 Serial.printf("Sen1:%d,Sen2:%d\n", sensor1Val, sensor2Val);
}
/**
 * followLine take appropriate chassis action based on sensor values
 */
void LineFollow::followLineDetect(RobotStateMachine * myStatus, RobotStateMachine

* myNextStatus, RobotStateMachine waitStatus, RobotStateMachine driveStatus,
RobotStateMachine countStatus, RobotStateMachine doneStatus, int correctionAmt){

if(sensor1Val >= BLACK && sensor2Val >= BLACK){
 lineCount++;
 if(lineCount >= numLines){
 *myNextStatus = driveStatus;
 *myStatus = doneStatus;
 }
 else{
 *myStatus = countStatus;
 }

 }
 else{
 if(sensor1Val >= BLACK && sensor2Val <= WHITE){

chassis->myleft->startInterpolationDegrees(chassis->myleft->getAngleDegrees() +
correctionAmt, 1000, SIN);

 }
 else if(sensor1Val <= WHITE && sensor2Val >= BLACK){

chassis->myright->startInterpolationDegrees(chassis->myright->getAngleDegrees() +
correctionAmt, 1000, SIN);

 }
 *myNextStatus = driveStatus;
 *myStatus = waitStatus;
 }

}

void LineFollow::followLineDrive(RobotStateMachine * myStatus, RobotStateMachine *

https://raw.githubusercontent.com/RBE200x-lab/RBE2001Code02/maste...

1 of 2 3/3/2019, 11:47 PM

myNextStatus, RobotStateMachine detectStatus, RobotStateMachine waitStatus,int
forwardAmt){

chassis->driveForward(forwardAmt, 1000);
*myNextStatus = detectStatus;
*myStatus = waitStatus;

}

/**
 * getLineCount return current number of counted perpendicular lines
 * @return number of perpendicular lines counted since last resetCount()
 */
int LineFollow::getLineCount(){

return lineCount;
}
/**
 * resetLineCount reset the number of counted perpendicular lines
 */
void LineFollow::resetLineCount(){

lineCount = 0;
}

https://raw.githubusercontent.com/RBE200x-lab/RBE2001Code02/maste...

2 of 2 3/3/2019, 11:47 PM

/*
 * Messages.h
 *
 * Created on: 10/1/16
 * Author: joest
 */
#include "Arduino.h"
#include "RBEPID.h"
#include <math.h>

//Class constructor
RBEPID::RBEPID() {

}

//Function to set PID gain values
void RBEPID::setpid(float P, float I, float D) {

kp = P;
ki = I;
kd = D;

}

/**
 * calc the PID control signel
 *
 * @param setPoint is the setpoint of the PID system
 * @param curPosition the current position of the plan
 * @return a value from -1.0 to 1.0 representing the PID control signel
 */
float RBEPID::calc(double setPoint, double curPosition) {

// calculate error
float err = setPoint - curPosition;
// calculate derivative of error
float derErr = err - last_error;
// calculate integral error. Running average is best but hard to implement

 //check for sign change and reset integral buffer
 if((last_error != 0) && (err / last_error) < 0){
 clearIntegralBuffer();
 }

sum_error += err;
// sum up the error value to send to the motor based off gain values.
float out = (kp * err) + (ki * sum_error) + (kd * derErr);

 last_error = err;

 out = fmin(out, 1);
 out = fmax(out, -1);

return out;
}

/**
 * Clear the internal representation fo the integral term.
 *
 */
void RBEPID::clearIntegralBuffer() {

sum_error = 0;
}

https://raw.githubusercontent.com/RBE200x-lab/RBE2001Code02/maste...

1 of 1 3/3/2019, 11:48 PM

Appendix 7: Contributions

Table 3: Team member contributions for lab and final project

Student Name
Contribution to: (%)

Lab Final Project

Jason Conklin 33.3 33

Teresa Saddler 33.3 34

Benjamin Ward 33.3 33

57

