RBE 1001 C °18, Introduction to Robotics

Final Project Report

“Cthulhu”

Team 13
Member: Signature: Contribution (%):
Samantha Grillo Samantha Grillo 333
Teresa Saddler Teresa Saddler 333
Tobias Schaeffer Tobias Schaeffer 333
Grading: Presentation 120
Design Analysis /30
Programming /30
Accomplishment 120

Total /100

Table of Contents

TADIE OF FIGUIES ...ttt ettt e st e sttt e et et e e ntesneesseenbeensesaeenteensesaeans ii
R 111 0o 11 Tox (o] 4 IO SRRSO 1
2 Preliminary DISCUSSION.......c.ccieiueiieiteeiteeee st estesttesteeteeseesteeaesseesseesessaesseessessaeseessesseessesnsenns 2
3 ProbIem STAtEMENT.oieieeresereee ettt sttt ettt b saeens 3
4 Preliminary DESIONS ...cc.eccueiieiieieceesie et stte st ete et e st e tesaaesaeebeeaaesseesesaaesseessessaesseensesssesseensens 4
5 Selection of FINAl DESIGNccveieiieiieeeeeeste ettt e et ea e sre e ae s e s aa e seenee e 6
6 FINAl DESIGN ANAIYSIS.eiiiiirtietirieeitetet ettt st sttt ettt be b et ene e 10
6.1 MeChaniCal ANAIYSISccevierieiierieie ettt ste et s sre et s esteesesseesseenaesneenes 10
6.2 Programming MethOdOIOQYcccccuerieieiieiieieseese ettt 12
TR BT o LYo g 101 (=T | - LA o] PR 13
6.4 Custom EIECtrONICS CIICUITevueeuieiiierieriesert et 13
7 Summary and EVAlUBLION..........ccoecuiiieiceeeeee et s 14
ST Y o] 1= o [o0 SRS 15
8.1 Appendix A: Program DOCUMENTAtION.........cceeiiiiiieeieeriee et ettt streesreesae e 15

8.2 Appendix B: Bill of MaterialS........cccueevieeiiiiieiiieeceese et 33

Table of Figures

Lo O T T (o I DT Vo | - Ty o OSSP 1
Figure 4.1: Preliminary Design SKEtCN.........ccviiiiiiii e 5
Figure 5.1: Coupler With ROtating COVENccoveiieiiciecieie e 7
Figure 5.2: FOUr-Bar MECNANISIM...........couiiiiiice sttt re e e snae e 8
Figure 5.3: Four-Bar Compound TranSMIiSSIONccueiieieeiieieesieeieseese e seesreeae e e e neesseesnas 8
Figure 5.4: Line Tracking SENSOr SYSIEM.....cc.iciiiiieiieeieieeie et ste e e et sre et te e sneenas 9
Figure 6.1: Four-Bar Free Body DIagramsS..........cceiveiieiiiieieeieseese e see e e sve e e sneesne e 10
FIgUre 6.2: FOUI-Bar GEAIINQc.cciveiuieieiieiteesiestesteese et e e te e steeste e s taesteeaessaesreennesseesneennens 12

Figure 6.3:

LLCD CHICUIL ettt e ettt e e et e e et e e e e e e e e et e e e e e e e e e e 13

1 Introduction

Robots can be ideal tools for missions, as they do not face many of the limitations that
humans do, but they often require systems that can navigate through complex environments and
can interact with objects in these environments. The challenge requires a robot to be able to
manipulate spheres of various
sizes, called ORBs,
ASTEROIDs, and STARSs while
maneuvering around a set field
(Figure 1.1). These spheres must

then be deposited into tubes with

three levels of heights, called
Figure 1.1: Field Diagram

ORBITS, or placed into a zone
at the edge of the field, called the BASE. An additional challenge is climbing and mounting a
platform called the BLACK HOLE. The challenge includes a fully autonomous period, a
teleoperational period, and a 30 second END GAME, in which the robot can score the large
STAR or mount the BLACK HOLE.

The challenge can be broken down into three main parts:

1) The robot will need to move autonomously and through radio controls,

2) The robot will need a way of collecting objects, and

3) The robot will need to transport and deliver these objects.

In order to design a robot to fulfill these tasks, prioritization of the many subtasks is

necessary, such that the optimal balance of capabilities can be found.

2 Preliminary Discussion

To decide what to focus on in the challenge, we looked at the point distribution and level
of difficulty of each task through both the autonomous and teleoperational periods of the game
and weighed our options accordingly. In our initial analysis, we ruled out a couple of scoring
options; namely, scoring the STAR, and scoring in the 18" ORBITS. Our reasoning for ruling
out the level three ORBITS was that in order for a mechanism to reach this high, the center of
gravity of the robot would be raised, decreasing the stability of the robot, which in this case was
a sacrifice we were not willing to make. As for the STAR, it was immediately clear to us that the
dimensions of this object made scoring it highly difficult, especially considering the starting size
constraints of the robot. With this consideration, we decided that it was not worth the increased
complexity level and possible other functionality sacrifice it would take to enable the robot to
score this.

With these scoring techniques eliminated, we decided our primary focus should be on
scoring ORBs into the 6" and 12" ORBITS, as this would allow the robot to score points in both
the autonomous and teleoperational periods. Additionally, we speculated that it would be easy to
score the ORBs in the BASE using a mechanism primarily designed to score them into the
ORBITS, so we decided to make this as a secondary goal. Similarly, we decided that adding the
capability to collect and score ASTEROIDs to a robot that could already collect and score ORBs
would be trivial, so this was added to our design goals. As we studied the END GAME, we
reasoned that as long as our robot could maintain stability, it would not pose much of a challenge
to climb the BLACK HOLE, so we decided to add this as another secondary goal.

We decided that it would be prudent to have multiple autonomous strategies, in order to

increase the adaptability of the robot. Since we had determined the primary purpose of our robot

is to deposit ORBs into the 12" ORBITS, we decided that our primary autonomous mode will

complete this task, but that we should have additional autonomous modes to score ORBs into the

level one ORBITS and to score ORBs into the BASE.

In the teleoperational period, we decided that our focus will be scoring ORBs and

ASTEROIDs into the level two ORBITS, but we will also consider scoring them into the level

one ORBITS if the game state was such that this is more advantageous. In the END GAME

period, we will cease scoring ORBs and ASTEROIDs, and attempt to climb the BLACK HOLE.

3 Problem Statement

Our robot needs to be able to efficiently move and collect and deposit objects in both

autonomous and teleoperational periods.

High Priority—For the robot to be successful, it must:

o

o

o

o

Maintain a stable 15.25" x 15.25"x 18" starting position

Weigh less than 10.0-lbs

Have a mechanism that can score ORBs into the level one and two ORBITS
Use a non-trivial power transmission

Have sensors that can facilitate accurate autonomous operation

Use a custom-built electronic circuit

Medium Priority—While these goals may be dismissed in order to fulfill one of the tasks

above, the robot should:

o

o

o

o

Be able to climb the BLACK HOLE
Score ORBS and ASTEROIDS in the BASE
Maintain stability

Use sensors to drive straight and turn accurately

Low Priority—If given additional time and resources, the robot would:
o Score the STAR

o Have a mechanism that could score ORBs into the level three ORBITS

4 Preliminary Designs

As we began considering the possible designs of our robot, we decided to begin by
focusing on the drivetrain and whether our wheelbase or our wheel track should be wider. We
considered how a proportionately wider wheelbase would increase the turning ability of the robot
while decreasing its ability to drive straight, and how a proportionately wider wheel track would
do the opposite. We decided that due to the demands of the challenge, neither should be favored,
and that ideally our wheelbase and wheel track would be similar in dimension. To make driving
as easy as possible, we decided to have two driven rear wheels, and two undriven front wheels.
Given our desire to climb the BLACK HOLE, we determined that the robot required the 4"
wheels at a minimum so the robot would be able to make it up the ledge; however, we decided
that we should remove the tires from the front wheels in order to allow them to slide more to
make driving easier. We chose to support the axles on either end by the chassis, in order to
reduce the stress on the axles and increase the durability of the drivetrain.

For our lifting mechanism we discussed using a rack and pinion, a claw, and a four-bar-
linkage with a scoop. Using a rack and pinion for the lifting mechanism would involve a pinion
driving a rack with a scoop attached, such that the scoop could be positioned where the bottom
was 0" from the floor, 6" from the floor, and 12" from the floor. As we thought through this, we
realized that the nature of the rack was not ideal for this mechanism, unless we were to have the
pinion near the top of the robot, which would decrease the stability of the robot. Due to this

limitation, we decided to discard this design idea.

If the claw were to be used as a lifting mechanism, it would need to be able to open and
close in order “pinch” ORBs and ASTEROIDs, and the arm would need to be able to move up
and down, such that ORBs and ASTEROIDs could be picked up, then deposited in the level one
and two ORBITS. This would require two different systems for the motion: one driving the arm,
and another opening and closing the claw. Additionally, in order to grab both ORBs and
ASTEROIDs, the claw would need to be able to hold spheres of different sizes, which poses a
challenge. Due to the complexity of the claw design, we decided that this would not be ideal, and
that a simpler way to do the same task would make more sense.

The most practical of the options was to use a four-bar-linkage with a scoop. Similar to
the rack and pinion, this would require that the scoop be able to be positioned such that the

" n t # s
bottom was 0" from the floor, 6" from the floor, and ~ _+« Stand iopd

12" from the floor; however, unlike the claw, this Beuidbmect ! |

design involves a crank and a follower bar, attached

in the lower-middle or back of the robot, being

driven from the crank. This would also make the

scoop being at different angles at different levels R -
§ 4
\gOrye 2

e

possible (Figure 4.1). As this lacked the drawbacks
o o Figure 4.1: Preliminary Design Sketch
presented by the rack and pinion, while giving
additional advantages, and was much simpler than the claw design as well as reliable and
durable, we ultimately decided that this design was preferable.
Next, we considered our custom electronic circuit. Initially, we planned to use a line

tracker using photoresistors and an operational amplifier as our custom electronics circuit. This

circuit could be used to track the lines on the field in order to align with the ORBITS. As we

thought about this further, however, we considered the issues we had been having with this
circuit and the unreliability of it and decided to use VEX line tracking sensors for this purpose
instead. As our robot still required a custom electronic circuit, we decided to use an LCD screen
as a serial output for debugging, so that we could more easily understand what was happening as
we tested our software. While we were originally going to place our line trackers above the
virtual turning center, we were advised that they should be placed at least a little before this point

in order to increase their accuracy, as turning compensations would not work properly otherwise.

5 Selection of Final Design

Our group went through several iterations of design throughout the process of building the
robot. Some of the elements we tested and altered were the drivetrain, the construction of the
lifter, the gearing of the four-bar linkage, and the mounting and use of various sensors.

While we were satisfied with the drivetrain initially, it presented a new challenge to our
group once the four-bar linkage was added. The moment of the four-bar linkage inhibited our
robot’s rear-wheel drive to the point where it could no longer turn. Too much of the weight of
the robot was shifted to the front wheels when the linkage was lifted off the ground, a position
which the robot needed to assume for large portions of time during demonstration. Our group
decided to turn the robot into a four-wheel-drive robot by altering the position of the front drive
wheels slightly, adding tires to the previously tireless rims, and gearing the front wheels
identically to the back wheels. The design was stable, it would still allow our encoders to
function properly, and it still allowed for semi-smooth turning. While this increased the
complexity of the design, ultimately it was beneficial in achieving our design goals.

Another problem our group faced was the construction of the four-bar linkage. The

initial design that we created before the IDR was heavy, shaky, and could not pick up or hold

tennis balls. The robot was also starting to get heavy so we replaced the metal coupler with a
reinforced cardboard coupler. By reinforcing the cardboard with metal, the coupler could still
support weight while not weighing down the mechanism or the robot. An additional benefit of
the cardboard coupler is it does not catch on the carpet as the metal did. While the cardboard
coupler is certainly less sturdy than the metal version, the weight reduction was necessary to
reduce the strain on the motor, and to stay within the weight limitations.

Despite the change of coupler, the four-bar needed something to keep the ping pong balls
and tennis balls in the lifting mechanism during transport to ORBITS. Our group’s solution was
to create a domed flap from cardboard to attach to the front of the coupler, and power its rotation
using a motor so that it can be opened and closed as a cover over the coupler (Figure 5.1). This
cardboard piece is again lightweight, and
without gearing the motor has more than
enough power to lift and clamp down on

tennis balls and ping pong balls. The only

. . A ‘ .

drawbacks to using this system are that the L N i A

) Figure 5.1: Coupler with Rotating Cover
use of a motor adds more weight on the end
of the four-bar, and that the robot sometimes has difficulty fully encapsulating the tennis ball in
its coupler, which can be accounted for in operation. The savings of weight that we made using
mostly cardboard instead of metal more than make up for the added weight of the motor,
however, and the robot being able to pick up a ball is one of the most important aspects of the

game. Despite the coupler now being able to acquire and carry balls, the four-bar mechanism

was still flawed.

The design of the four-bar mechanism was
one of our main focuses after the IDR was
complete. The mechanism was originally built in a
rushed manner in order to assist in demonstrating
the robot’s ability to climb the BLACK HOLE. The
first generation of the mechanism was thrown

together with keps nuts, screws, and a 12:60

transmission on a 3-wire motor for rotating the ‘
. s) Figure 5.2: Four-Bar Mechanism
crank. We essentially rebuilt this mechanism, gure 5 our-Barviechanis
adding a support midway down the follower for more stability, and plastic bearings and shaft

collars on the axles (Figure 5.2). The most important change was a compound transmission

j (Figure 5.3), with two 12:60 reductions which

improved the mechanisms operation
significantly and resulted in a much lower gear
ratio (e) of 0.04 on the arm. Before the change,
the mechanism could be operated by remote,
and was difficult to keep under control in a
constant balance of avoiding motor stall and
back drive. With the compound gearing, the

motor now runs at a higher RPM which means

Figure 5.3: Four-Bar Compound Transmission

there is less strain on the motor. The arm also raises at a controllable speed now and does not
back-drive. We originally intended for a low e value because it would make the arm move in a

smooth and predictable motion instead of the jagged motion we could otherwise expect with a

higher e. Therefore, the new compound gear reduction was the perfect gearing for our crank
motor.

Our sensor systems also provided us with challenges. Our original plan for autonomous
control of the robot was to have the robot drive straight using encoders to ensure that motor rpm
was identical on both sides of the drivetrain, gyro to ensure precise turning angles, line trackers
to determine position on the field and to approach ORBITS straight on, and a potentiometer to
control the angle of the arm. We knew that our line trackers had to be located in front of the
VTC, and with our initial design, this did not pose an issue, as with two-wheel drive the VTC
was located near the rear of the robot and the sensors could be mounted on one of the cross-bars
on the chassis; however, with the switch to four-wheel drive the VTC was moved forward,
making the sensors difficult to mount without
interfering with the four-bar mechanism. We solved
this by adding a plate in the center of the chassis to
mount the sensors on, so that they were still in front
of the VTC. We also decided to lower the line

trackers, making them more accurate, as they were

initially about two inches off the ground and we
were experiencing repeated inconsistencies with Figure '5_4; Line Tracking Sensor System
their readings (Figure 5.4). This entire configuration was tighter than we intended, but allowed
us to still use the line trackers, an essential part in our autonomous strategy. The encoders did not
pose a problem mechanically, but increased the complexity of our software significantly. Since
we needed to track the rotations while also counting lines from the line trackers, this would

require using interrupts, functionality which we were unable to work out with the object-oriented

10

class system. After considering our options, we decided to forego the encoders, as their limited
use did not justify the time required to make them work in code, and the robot was already able

to drive sufficiently straight without a sensor system.

6 Final Design Analysis

6.1 Mechanical Analysis

Speed: Vgriveiine = A * T *n x e

) 60 in in
Variveline = (4 in)mw(80 rpm) (Q) = 713-76% =~ 12@

Tractive Force: Fy, = pn* N

Fir (driveline) = 1+ (91bs) =91bs

T 1 14.76 in - lbs\ 7 0.95\ /1
e = (22 () (3) = (2250 2) () 1) -

e 0.71 4in/\2
Fr

+X 0=7° T
'E S Fy2 Fy3=Fy1+ (Wf/z)
N v
:_= i Fx2

+ 4
Werank = 0.2 Ibs y a Werank = 0.2lbs
Weoupter = 0.2 Ibs Weoupler =0.2 Ibs | 11.00" I
[-----m-- 11.00" ------- 114.00"| [-4.00"-I

-2."l
Figure 6.1: Four-Bar Free Body Diagrams

Coupler Equations of Equilibrium:

ZFy (coupler) = Fy + Ff * sin(7°) —0.21lbs =0
ZFx(coupler) =F —Fp* cos(7°) =0

Y M couptery = Fr * cos(7°) = (3.25in) — (0.2 lbs) x (2.0in) =0

11

YM,, = F; * (3.47) — 0.4 in - lbs = 0

0.4
2Mza = Fr =375
F; = 0.121bs

Output Torque of Four-Bar Motor:

YE, =FE + Frxsin(7°) —0.2lbs = 0
E, = —(0.12)(0.12) + 0.2 Ibs
F, = —-0.0144 + 0.2 lbs

F,; = 0.186

1
Fy3(crank) = Fyl + (E) (Wfollower)

Fy3(crank) = 0.186 lbs + (0.1 lbs)
Fy3 = 0.285 lbs
1
Tout = Fy3 * Lepani + (Wcrank) (E) (Lcrank)

Tourout = (0.285 1bs)(11.00)+ (0.21bs)(5.5) = 4.2in — lbs

e — Ndrivers — (12 * 12) — 4
four_bar Ndriven 60 * 60

(Tin)*n_e
Tout

Tin = 0.19in - lbs

Linear Interpolation —» 88.9 rpm — (88.9 rpm)(0.04) = 3.6 rom of 4 — bar

12

As we assessed our design, we began with
the typical driveline calculations, finding about 12-

in/sec for the speed of the robot, a tractive force of

9-1bs, and a torque force of about 9.9-in-Ibs. Since

the tractive force is greater than the torque force,

the robot is traction-limited. This limitation is more
Figure 6.2: Four-Bar Gearing

beneficial than having a torque-limited robot, as

that would mean we chose a motor without enough power.

Next, we assessed our four-bar linkage mathematically. We began with the FBD of the
coupler, solved for the force the follower exerted on it at a 7° angle, then used that value, along
with the weight of the rest of the four-bar linkage, to determine the torque output by the
transmission of the four-bar, which came to 4.2-in-1bs. We then used this torque out and the
equation relating torques to the speed ratio to solve for required motor torque, which came out to

be 0.19-in-Ibs. We then used linear interpolation to determine that the motor would rotate at

88.9-rpm, which would result in the four-bar rotating at 3.6-rpm.

6.2 Programming Methodology

Our robot operates differently in the autonomous and teleoperational periods, which
required us to control the robot differently in our autonomous and teleoperational functions in the
code. For our autonomous code makes use of proportional control using the gyro sensor for
turning, proportional control using the potentiometer to raise and lower the four-bar, and line
tracking and counting using the VEX line tracker sensors. The teleoperational code is modelled
after the DFW Tank program, making use of the controller buttons to control the coupler cover

and the four-bar linkage. The joysticks still operate the same as when running DFW Tank. We

13

also included messages to be printed on our LCD screen throughout the match, depending on the
section of the demonstration the robot is operating in, in order to understand what fails if the

robot doesn’t perform as intended.

6.3 Sensor Integration

Our final robot made use of two VEX line trackers, one potentiometer, and one gyro. The
line trackers are used to count and follow lines autonomously, and the potentiometer is used to
track the position of the four-bar, and control angle when rotating the four-bar in both
autonomous and teleoperational periods. The gyro is used to make precise 90° turns in the

autonomous period.

6.4 Custom Electronics Circuit

Our custom electronic circuit is an LCD display
is made from the RBE 1001 student Kits, using the
breadboard, the LCD display, a potentiometer, and
several wires. The LCD display is used to debug the
robot code, so that we can easily see what is going on as

we test our code. We thought this use of the LCD

display would be more effective than using the serial

Figure 6.3: LCD Circuit

monitor in the Arduino IDE, as it can be used on-field
without requiring a laptop with a wired connection to the robot. We are also able to use it during
demonstration to ensure that the robot is ready for the autonomous function to be executed. We

set up a startup display for the demonstration.

14

7 Summary and Evaluation

During the Critical Design Review (CDR) the robot performed almost perfectly during the
autonomous period, but our potentiometer had become slightly uncalibrated so that the coupler
was just a bit too low. This lower-than anticipated arm height caused the robot’s coupler to push
into the 12” ORBIT rather than hovering over it, and when the cover flap was raised, the balls
missed the ORBIT completely. For the Optional Extended Demonstration (OED), we changed
some of the four-bar code, adding a backup to the proportional control to make sure the four-bar
is at its max height once it reaches the 12” ORBITS. During the teleoperational demonstration
we scored nine points by scoring ORBs in the 12” ORBITS. We struggled picking up tennis balls
with the cardboard edge of the coupler, so for the OED we added small spikes of zip ties to the
top edge, which proved to be helpful in practice sessions before the OED. We are not able to
climb the BLACK HOLE during the CDR like we hoped, and we decided we all needed to
practice driving before the OED, also deciding made some of the controls more intuitive for the
OED for ease of use.

When the OED came, our robot had some issues with the DFW code, as multiple times the
DFW class would never get to calling the teleoperational code. While we remained uncertain
why this happened, this bug disappeared after inhibiting us during the first two matches. The
robot consistently mechanically, and we were able to demonstrate autonomously scoring four
ORBS in a 12” ORBITS, and manually score one ASTEROID in the 12” ORBITS. We were not
able to climb the BLACK HOLE as we hoped, though, as when the OED came it was not a high
priority to do, as attempting to do so could have done more damage to our robot than the three
points were worth. Overall, this project was successful, as we were able to achieve all of our

high-priority design specifications, and one of our medium-priority design specifications.

15

8 Appendices

8.1 Appendix A: Program Documentation

/* final project two auto.ino
* Based off of RBE 1001 DFW Template
*
/
#include <DFW.h>
#include "MyRobot.h"
MyRobot myRobot; // Instance of myRobot class for controlling
// entire robot
DFW dfw(&myRobot); // Instantiates the DFW object and setting the
// debug pin. The debug pin will be set high
// 1f no communication is seen after 2 seconds

void setup() {
Serial.begin(9600); // Serial output begin. Only needed for
// debug
dfw.begin(); // Seriall output begin for DFW library. Buad and

// port #."Seriall only"
myRobot.initialize () ;
myRobot . dfw=&dfw;

}

void loop () f{
dfw.run() ;

}

/* MyRobot .cpp
*/
#include "MyRobot.h"
#include "Arduino.h"
/**
These are the execution runtions
*
/
void MyRobot::initialize (void) {
leftLinePin = A2; // set pin for left line tracker to analog
// pin 2
rightLinePin = Al; // set pin for right line tracker to analog
// pin 1
potPin = A0; // set pin for potentiometer to analog pin 0
leftmotor.attach(4, 1000, 2000); // left drive motor pin#,
// pulse time for 0, pulse
// time for 180
rightmotor.attach(5, 1000, 2000); // right drive motor pin#,
// pulse time for 0, pulse
// time for 180
armMotor.attach (11, 1000, 2000); // arm motor pin#, pulse time
// for 0, pulse time for 180
flapMotor.attach(7, 1000, 2000); // cover flap motor pin#,

16

// pulse time for 0, pulse
// time for 180
pinMode (rightLinePin, INPUT); // set pin for right line tracker
// to input
pinMode (leftLinePin, INPUT); // set pin for left line tracker
// to input
Ag = 10; // set the gain for proportional control of the arm
Tgain = 15; // set the gain for the proportional control for
// turning
degreesTurned = 0; // set initial turn angle
armBot = 380; //potentiometer reading for bottom of robot arm
// range; must be calibrated using calibration
// code after pot readjustment
armTop = 745; //potentiometer reading for top of robot arm
// range; must be calibrated using calibration
// code after pot readjustment
lightThreshold = 900; // threshold for line tracker readings;
// must be calibrated using calibration
// code in each new lighting environment
rs = 22; // set register select pin
en = 24; // set enable pin
d4 = 25; // set d4 data line pin
d5 = 26; // set d5 data line pin
dée = 27; // set dé6 data line pin
d7 = 28; // set d7 data line pin
jumpPin A3; // set pin for red/blue team jumper cable
autoPin = A4; // set pin for 6"/12" autonomous jumper cable
jumped = digitalRead (jumpPin); // true if on blue team
// false if on red team
shortAuto = digitalRead(autoPin); // true if running 6" ORBITS
// auto
// false if running 12"
// ORBITS auto

/* Initialize LCD) */

LiguidCrystal lcd(rs, en, d4, d5, de, d7);
lcd.begin(le, 2);

lcd.clear () ;

lcd.print ("Lowering Arm") ;

bool isLowered = false; // True if arm is at bottom position
// (potentiometer reads armBot within
// margin of error)
// False if arm is not at bottom
// position

17

/* Make sure cover flap is closed */

flapMotor.write (60) ;

delay (200) ;

flapMotor.write (90) ;

/* Lower arm */

lcd.print ("Lower the gates!");

long time0 = millis(); // Initial time for lower arm attempt

raiseTime = 5500; // Max amount of time to try to lower arm

// before giving up
/* Lowers arm either until arm reaches bottom position
(potentiometer reads armBot within margin of error) or until

time allotted runs out */

while (!isLowered && timeO + raiseTime > millis()) {
isLowered = moveArm(armBot) ;

}

/* Begin and calibrate gyro */
Wire.begin () ;
/* Checks to make sure gyro is successful in initialization */
if (!gyro.init()){ // Gyro unsuccessful in initialization
lcd.clear () ;
lcd.print ("Gyro fail");
while (1) ;
}
lcd.clear () ;
led.print ("Steady!") ;
gyro.enableDefault () ;
calx = calibrate() ;

/* Signal that robot is done initializing and ready to begin
autonomous */

lcd.clear () ;

led.print ("Aim!") ;

/**
Moves arm to given position
Uses potentiometer to determine current position, and compares
to given potentiometer wvalue
@param height Height to raise arm (potentiometer value that
should be read at goal height)
@return True if successfully raised
False if unsuccessfully raised

18

*

/

bool MyRobot::moveArm(int height)
/* Initialize LCD */
LiquidCrystal lcd(rs, en, d4, d5, de, d7);
lcd.begin (16, 2);

bool isRaised = false; // True if arm is within declared margin
// of height
// False if arm is not within declared
// margin of height

float margin = 1.02; // Margin of acceptable error that is
// acceptable for arm to be in
int current = analogRead(potPin); // Current height of arm

/* Checks if height is lower or higher than goal height */
if (margin * current < height) { // Lower than goal height

delay (10) ;
// Value to pass to arm motor
long motorwrite = (90 - (Ag * (current - height)));

/* Checks that motorwrite is between 0 and 180 */
if (motorwrite > 180) { // motorwrite greater than highest
// possible value
motorwrite = 180;
} else if (motorwrite < 0) { // motorwrite less than lowest
// possible wvalue
motorwrite = 0;
}
/* Display current arm position */
lcd.clear () ;
lcd.print (current) ;
/* Move arm towards correct position */
armMotor.write (motorwrite) ;
} else if (current > height * margin) { // Higher than goal

// height
delay(10) ;
// Value to pass to arm motor
long motorwrite = (90 - (Ag * (current - height)));

/* Checks that motorwrite is between 0 and 180 */
if (motorwrite > 180) { // motorwrite greater than highest
// possible wvalue
motorwrite = 180;
} else if (motorwrite < 0) { // motorwrite less than lowest
// possible wvalue
motorwrite = 0;
}
/* Display current arm position */
lcd.clear () ;
lcd.print (motorwrite) ;
/* Move arm towards correct position */

19

armMotor.write (motorwrite) ;

} else { // Arm at correct position within margin of error
isRaised = true;
armMotor.write (90) ;

)

return isRaised;

}
/**

Dumps balls from lift using cover flap
@return void

*/

void MyRobot: :dump () {
/* Open cover flap */
flapMotor.write (120) ;
delay (300) ;
flapMotor.write (90) ;

}
/**

Detects whether line tracker senses a line
@param pin Pin number for line tracker to check
@return True if tracker senses line
False if tracker does not sense line
*
/
bool MyRobot::lineDetect (int pin) {
return (analogRead(pin) < lightThreshold) ;

}

/**
Checks line trackers and adjusts robot position accordingly to
follow line until an ORBITS is reached
@param pl Pin for left line tracker
@param p2 Pin for right line tracker
@return void
*/
void MyRobot::lineFollow(int pl, int p2) {
/* Initialize LCD */
LiguidCrystal lcd(rs, en, d4, d5, de, d7);
lcd.begin(le, 2);
lcd.clear () ;
lcd.print ("line following") ;

bool distReached = false; // True if ORBITS is reached

/*

*/

// False if ORBITS has not been
// reached

/* Continuously checks line trackers and adjusts until ORBITS

is reached */
while (!distReached) {
/* Check if line trackers detect lines */
if (lineDetect (pl) && lineDetect(p2)) { // ORBITS reached
lcd.print ("Distance Reached!");
distReached = true;

20

} else if (lineDetect(p2)) { // Right side drifted onto line

lcd.clear () ;

led.print ("Turn Right!") ;

/* Turn robot towards the right */
rightmotor.write (40) ;
leftmotor.write (40) ;

} else if (lineDetect(pl)) { // Left side drifted onto line

lcd.clear () ;
lcd.print ("Turn Left!");
/* Turn robot towards the left */
rightmotor.write (150) ;
leftmotor.write (150) ;

} else { // Robot not on any line
lcd.clear () ;
led.print ("Drive Straight!");
/* Go straight at low speed */
driveStraight (25) ;

}

delay(20) ;

*

Turns robot given number of degrees

Left turn is negative degrees

Right turn is positive degrees

Uses gyro to ensure accuracy

@param degrees Number of degrees to turn robot
@return void

bool MyRobot::turn(int degrees) {

int motorspeed = 0; // Speed to write to motors
/* Check 1f robot has reached desired angle */
if (abs(degreesTurned) < abs(degrees)) { // Robot hasn't
// reached desired
// angle
/* Let gyro determine current angle */
gyro.read() ;

21

theta = ((theta - millis()) / 1000); // Set time since last
// turn
// Recalculate current angle
degreesTurned += (15 * theta * readgyrox(calx) / 1000) ;
// Calculate what speed to set motors to
motorspeed = (90 - (Tgain * (degrees - degreesTurned))) ;
/* Turn robot */
leftmotor.write (motorspeed) ;
rightmotor.write (motorspeed) ;
theta = millis(); // Set to current time
delay (1) ;
return false;
} else { // Robot has reached desired angle
return true;
}

}
/**

Drives robot straight at given speed
@param speed Speed to drive motors at
Must be between -90 and 90
Integers between -90 and -1 drive robot backwards
0 stops robot
Integers between 1 and 90 drive robot forward
@return void

*/

void MyRobot::driveStraight (int speed)
/* Drive robot straight at given speed */
leftmotor.write (90 + speed);
rightmotor.write (90 - speed) ;

}
/**

* Stop drivetrain motors
* @return void
*/
void MyRobot: :stopMotors ()
/* Stop robot */
leftmotor.write (90) ;
rightmotor.write (90) ;

}

/**
Backs robot up at speed of 60 for 250 milliseconds then stops
@return void

*/

void MyRobot: :backUp() {

22

/* Drive robot backwards */
driveStraight (-60) ;

delay (250) ;

/* Stop robot */
leftmotor.write (90) ;
rightmotor.write (90) ;

/**

Called by the controller between communication with the
wireless controller during autonomous mode

@param time Amount of time remaining

@return void

*/

void MyRobot: :autonomous (long time) {

}

/**
*

int startTime = millis(); // Time that autonomous function is
// started
/* Check if doing 6" or 12" ORBITS autonomous */
if (shortAuto) { // Doing 6" ORBITS autonomous
runShortAuto (time, startTime) ;
} else { // Doing 12" ORBITS autonomous
runLongAuto (time, startTime) ;
}
/* Stop motors in case robot didn't reach a stop before time
ran out */
stopMotors () ;

Robot drives forward while raising arm until parallel with 12"
ORBITS, then turns 90 degrees towards ORBITS, and dumps balls
into ORBITS

* @param time Amount of time given for auto

* @param startTime Time that autonomous period began

* @return void

*/

void MyRobot: :runLongAuto(long time, int startTime)

/* Initialize LCD */

LigquidCrystal lcd(rs, en, d4, d5, de, d7);
lcd.begin(l6, 2);

lcd.clear () ;

led.print ("Fire!") ;

delay (1000) ;

int lineCount = 0; // Number of lines passed by robot
bool turned false; // True if robot has already turned

// False if robot has not already turned
false; // True if robot is currently on a line

bool onLine

23

// False if robot is not currently on a
// line
bool done = false; // True if robot has done everything it's
supposed to for autonomous
// False if robot has not done everything
// it's supposed to for autonomous
/* Runs autonomous code while within time limit */
while (millis() < startTime + time) ({
/* Checks if robot has done everything it's supposed to */
if (!done) { // Robot has done everything it's supposed to
/* Move arm up off ground */
armMotor.write (180) ;
delay(4000) ;
/* Drive forward */
driveStraight (50) ;
delay(1500) ;
/* Drives forward and raises arm while within autotime and
robot hasn't reached fourth line */

while (lineCount < 4 && millis() < startTime + time) {
/* Raise arm to high position */
moveArm (armTop) ;
/* Display how many lines robot has passed */
lced.print (lineCount) ;
/* Check if robot is on a line that it hasn't counted */
if (lineDetect (leftLinePin) && lineDetect (rightLinePin)
&& !onLine) { // Robot is on a line it hasn't counted
lineCount++;
onlLine = true;
}
/* Check if robot has moved off a line */
if (!lineDetect (leftLinePin) && !lineDetect (rightLinePin)
&& onLine) { // Robot has moved off a line
onlLine = false;

}

/* Check i1f robot has reached fourth line */

if (lineCount == 4) { // Robot has reached fourth line
/* Stop robot and raise arm */
stopMotors () ;
armMotor.write (180) ;
delay (500) ;

armMotor.write (90) ;

turned = false;

degreesTurned = 0; // Set how much robot has turned to
// 0

theta = millis(); // Set time since last turn to
// current time

long time0 = millis(); // Starting time for turn
/* Turns robot until robot reaches 90 degree turn or
allotted time for turn runs out */
while (!turned && ((millis() - timeO) < 2000)) {
/* Checks if robot is on red or blue team */
if (jumped) { // Robot is on blue team
turned = turn(-200) ;
} else { // Robot is on red team
turned = turn(80) ;

)

delay (10);
}
/* Follow 4th line until ORBITS*/
lineFollow(leftLinePin, rightLinePin) ;

/* Stop robot in front of ORBITS and deposit ORBS */
stopMotors () ;

dump () ;

delay (1000) ;

/* Backup from ORBITS */

backUp () ;

done = true;

Robot raises arm, drives forward until 6" ORBITS is reached,
then dumps ORBS into ORBITS

* @param time Amount of time given for auto

* @param startTime Time that autonomous period began
* @return void

*/

void MyRobot::runShortAuto(long time, int startTime)
/* Initialize LCD */

LigquidCrystal lcd(rs, en, d4, d5, de, d7);

lcd.begin (16, 2);

lcd.clearx () ;

led.print ("Fire!") ;

delay (1000) ;

false; // True if robot has already turned

// False if robot has not already turned
bool onLine = false; // True if robot is currently on a line
// False if robot is not currently on a
// line

bool turned

24

25

bool done = false; // True if robot has done everything it's
// supposed to for autonomous
// False 1if robot has not done everything
// it's supposed to for autonomous
bool armRaised = false; // True if arm has been raised to
// desired height
// False if arm has not been raised to
// desired height

/* Runs autonomous function until time runs out */
while (millis() < startTime + time) {
/* Check if robot has done everything it's supposed to for
autonomous */
if (!done) { // Robot has not done everything it's suposed to
// for autonomous
long time0 = millis(); // Initial time for robot raising
// arm
/* Raises arm until it reaches the desired height or until
alloted time runs out or until autonomous period ends */
while(!armRaised&& raiseTime + timeO0 > millis() && millis{()
< startTime + time) {
armRaised = moveArm(armTop) ;
}
/* Drives over BASE line */
driveStraight (50) ;

delay (700) ;

/* Runs until reaches 6" ORBITS, or autonomous period ends
*/

while (!onLine && millis() < startTime + time) {

/* Raise arm */
moveArm (armTop) ;
/* Check i1f robot reaches 6" ORBITS for first time */
if (lineDetect (leftLinePin) && lineDetect (rightLinePin)
&& !onLine) { // Robot reached 6" ORBITS for first
// time
onlLine = true;
}
/* Check if robot at ORBITS */
if (onLine) { // Robot at ORBITS
/* Stop robot and raise arm */
stopMotors () ;
armMotor.write (180) ;
delay (500) ;
armMotor.write (90) ;
/* Back robot up and dump balls into ORBITS */
backUp () ;

*/

26

dump () ;

delay (1000) ;

/* Back robot up */
backUp () ;

done = true;

Called by the controller between communication with the
wireless controller

during teleop mode

@param time the amount of time remaining

@return void

void MyRobot::teleop(long time)

/* Initialize LCD */

LiquidCrystal lcd(rs, en, d4, d5, de, d7);
lcd.begin (16, 2);

lcd.print ("Jdesus take the ");
lcd.setCursor (0, 1);

led.print ("wheel!") ;

/* RC Controls */

// DFW.joystick will return 0-180 as an int into
// rightmotor.write

rightmotor.write (180 - dfw->joysticklv());
leftmotor.write (dfw->joystickrv()) ;

if (dfw->rl1()) // Top right bumper raises arm
armMotor.write (180) ;
else if (dfw->r2()) // Bottom right bumper lowers arm

armMotor.write (0) ;
else // If neither bumper pressed, stop arm movement
armMotor.write (90) ;

if (dfw->11()) // Top left bumper raises cover flap
flapMotor.write (110) ;
else if (dfw->12()) // Bottom left bumper lowers cover flap

flapMotor.write (70) ;

else // If neither bumper pressed, stop cover flap movement
flapMotor.write (90) ;

/* 30 milliseconds between polling for teleop */

delay (30) ;

/**

27

Calibrates gyroscope
@return Degrees needed to zero gyroscope

*/

int MyRobot::calibrate (void) {
long calx = 0; // Degrees needed to calibrate gyroscope
/* Finds calx value by taking large sample then averaging */
for (int 1 = 0; 1 < 2000; i++)
gyro.read() ;
calx = calx + gyro.g.x;
}
calx = calx / 2000;
theta = millis(); // Sets theta to current time
return calx;

}
/**

Takes average of 5 gyroscope readings
@param calx Degrees needed to zero gyroscope
@return Normalized gyroscope readings
*
/
int MyRobot::readgyrox (int calx)
double reading = 0; // Gyroscope angle reading
/* Finds reading by taking large sample then averaging */

for (int i = 0; i < 5; i++) {
gyro.read () ;
reading += (int)gyro.g.x;
delay (1) ;

}

reading = reading / 5;

return (reading - calx);
}
/**

* Called when the start button is pressed and the robot control
begins

*/

void MyRobot: :robotStartup () {

}
/**

* Called at the end of control to reset the objects for the next
start

*/
void MyRobot : : robotShutdown (void) {

}

28

/* MyRobot.h */
#pragma once

#include "Servo.h"

#include <DFW.h>

#include <AbstractDFWRobot.h>
#include <L3G.h>

#include <Wire.h>
#include<LiquidCrystal.h>

class MyRobot : public AbstractDFWRobot
public:

~MyRobot () {}; // Destructor for object (default destructor)

DFW * dfw; // Instance of DFW object

/**
Called when the start button is pressed and the robot
control begins

*/

void initialize (void) ;

/**
Called by the controller between communication with the
wireless controller
during autonomous mode
@param time the amount of time remaining
@param dfw instance of the DFW controller

*

/

void autonomous (long time) ;

/**
Called by the controller between communication with the
wireless controller
during teleop mode
@param time the amount of time remaining
@param dfw instance of the DFW controller

*/
void teleop(long time) ;
/**
Return the number of the LED used for controller signaling
*/

int getDebugLEDPin (void)
return 13;

}i

/**
* Dumps balls from coupler
*/

void dump () ;

/**

* Follows line using line trackers

*/
void lineFollow(int pl, int p2);
/**
* Determines whether line tracker senses line
*/
bool lineDetect (int pin);
/**
* Turns robot given number of degrees
*/
bool turn(int degrees) ;
/**
* Backs up robot then stops
*/
void backUp () ;
/**
* Short version of autonomous that scores in the 6" ORBITS
*/
void runShortAuto(long time, int startTime) ;
/**

* Long version of autonomous that scores in the 12" ORBITS
*/

void runLongAuto (long time, int startTime) ;

/**
* Drives robot straight at given speed
*/
void driveStraight (int speed) ;
/**
* Calibrates the gyroscope
*/
int calibrate(void) ;
/**
* Finds normalized reading for gyroscope
*/
int readgyrox(int calx) ;
/**
* Stops driveline motors
*/

void stopMotors (void) ;
void robotStartup (void) ;
void robotShutdown (void) ;

private:

unsigned potPin; // Pin for arm potentiometer

Servo rightmotor; // Motor on right side of drivetrain
Servo leftmotor; // Motor on left side of drivetrain
Servo armMotor; // Motor controlling arm

Servo flapMotor;

29

/* moves arm towards given position */

boolean moveArm(int height) ;

int armTop; // Potentiometer value for the arm at high
// position

int armBot; // Potentiometer value for the arm at low
// position

int Ag; // Gain for proportional control of the arm

int lightThreshold; // threshold for line tracker readings,
// below this threshold means line 1is

// sensed; must be calibrated using

30

// calibration code in each new lighting

// environment
int Tgain; // Gain for proportional control for turning
L3G gyro; // Instance of gyroscope
int calx; // Degrees to zero gyroscope
double theta; // Amount of time since last turn

float degreesTurned; // Number of degrees robot has turned

// since it began turning
int rs; // LCD register select pin
int en; // LCD enable pin
int d4; // LCD d4 data line pin
int d5; // LCD d5 data line pin
int d6; // LCD dé data line pin
int d7; // LCD d7 data line pin

unsigned jumpPin; // Pin for jumper cable signifying whether

// robot is on blue or red team
boolean jumped; // True if robot is on blue team
// False 1if robot is on red team

unsigned autoPin; // Pin for jumper cable signifying whether

// robot is doing 6" or 12"ORBITS
// autonomous
boolean shortAuto; // True if robot is doing 6" ORBITS
// autonomous
// False if robot is doing 12" ORBITS
// autonomous
unsigned leftLinePin; // Pin for left line tracker
unsigned rightLinePin; // Pin for right line tracker

int raiseTime; // Max alloted time to let arm try to move to

// correct position

/* calibration code.ino

* This is used to calibrate the potentiometers and line trackers

* on the robot
* Tt is built off of the DFWTank program
*/

#include <DFW.h> // DFW include

#include <Servo.h> // servo library

31

#include <LiquidCrystal.h> // LCD library

// Pin for left line sensor

#define LeftPin A2

// Pin for right line sensor

#define RightPin Al

// Number of lines counted by sensors

int lineCount = 0;

// Current threshold value for line trackers

int lineCal = 930;

class DFWRobot: public AbstractDFWRobot
Servo rightmotor; // motor for right side of drivetrain
Servo leftmotor; // motor for left side of drivetrain
Servo armMotor; // motor for arm
Servo flapMotor; // motor for cover flap

public:
DFW * dfwPointer; // DFW object
/**
* Attatches motors
*/

void robotStartup()
leftmotor.attach(4, 1000, 2000); // left drive motor pin#,
// pulse time for 0,pulse
// time for 180
rightmotor.attach(5, 1000, 2000); // right drive motor
// pin#, pulse time for
// 0,pulse time for 180
armMotor.attach (11, 1000, 2000); // arm motor pin#, pulse
// time for 0, pulse time
// for 180
flapMotor.attach(7, 1000, 2000); // cover flap motor pin#,
// pulse time for 0, pulse
// time for 180

}

/**
Autonomous function for robot (does nothing)
*/
void autonomous (long time) {};
/**
* Determines whether line sensor is over a line
*/

bool lineDetect (int pin) {
return (analogRead(pin) < lineCal) ;
/:\—*
* Teleoperational function for robot
* Used for calibrating potentiometer and line trackers

*/

32

void teleop(long time) {
/* Initialize LCD */
int rs 22; // LCD register select pin
int en = 24; // LCD enable pin
int d4 = 25; // LCD d4 data line pin
int d5 = 26; // LCD d5 data line pin
int d6 = 27; // LCD dé data line pin
int d7 = 28; // LCD d7 data line pin
LiquidCrystal lcd(rs, en, d4, d5, de, d7);
lcd.begin(le, 2);

pinMode (LeftPin, INPUT); // Set pin with left line tracker
// to input

pinMode (RightPin, INPUT); // Set pin with right line
// tracker to input

/* Display line tracker data on LCD */
led.clear () ;

lcd.print("C ") ;

lcd.print (1lineCount) ;

led.print (" L ") ;

lcd.print (analogRead (LeftPin)) ;
lcd.setCursor (0, 1);

led.print ("R ") ;

lcd.print (analogRead (RightPin)) ;
delay(10) ;

/* Display potentiometer data on LCD */

lced.print ("Pot:") ;

lcd.print (analogRead (A0)) ;

delay (50) ;

/* Checks if robot is over a line */

if (lineDetect (LeftPin) && lineDetect (RightPin))
// Robot over a line
lineCount++;

}

/* RC Controls */

if (dfwPointer->getCompetitionState() != powerup) {
// DFW.joystick will return 0-180 as an int into
// rightmotor.write
rightmotor.write (180 - dfwPointer->joysticklv());
// DFW.joystick will return 0-180 as an int into
// leftmotor.write
leftmotor.write (dfwPointer->joystickrv()) ;

if (dfwPointer-sone()) // 1 moves arm down
armMotor.write (0) ;
else if (dfwPointer->two()) // 2 moves arm up

armMotor .write (180) ;

}
}i

33

else armMotor.write(90); // if neither 1 or 2 pressed,
// arm stationary
if (dfwPointer->three()) // 3 moves cover flap up
flapMotor.write (110) ;
else if (dfwPointer->four()) // 4 moves cover flap down

flapMotor.write (70) ;
else // if neither 3 or 4 pressed, cover flap stationary

flapMotor.write (90) ;

void robotShutdown (void) {};
int getDebugLEDPin (void) {
return 13;

}i
}i

DEFWRobot robot;
DFW dfw(& robot); // Instantiates the DFW object and setting

// the debug pin. The debug pin will be set
// high if no communication is seen after 2
// seconds

void setup() {
Serial.begin(9600); // Serial output begin. Only needed for
// debug
dfw.begin(); // Seriall output begin for DFW library. Buad and

// port #."Seriall only"

robot .robotStartup();// force a robot startup for testing
robot .dfwPointer = &dfw; // pass a controller to the robot

}

void loop () {
dfw.run();// Called to update the controllers output. Do not

// call faster than every 15ms.

robot.teleop(0) ;// run the teleop function manually

}

8.2 Appendix B: Bill of Materials

Item Quantity Unit Cost Total Cost
High Strength Gear Kit | 1 $20.00 $20.00
Advanced Gearing Kit | 2 $20.00 $40.00
Line Trackers (3) 1 $30.00 $30.00
Gyro 1 $12.00 $12.00
Total Cost | $102.00

